Numerical taxonomy of Ginkgophyta fossils in China

分类单元 生物 线性判别分析 主成分分析 分类学(生物学) 数值分类学 古生物学 判别函数分析 植物 进化生物学 人工智能 数学 统计 计算机科学
作者
Jingjing Wang,Cunlin Xin,Lu-Han Wang,Yamei Zhang,Zhi-Peng Jiao,Guo-Yun Di,Song-xin Liu
出处
期刊:Historical Biology [Taylor & Francis]
卷期号:34 (10): 2037-2052
标识
DOI:10.1080/08912963.2021.1999939
摘要

The categories of Ginkgophyta fossil plants are varied and distributed all over the world. Due to wide variations in leaf division along with the relatively similar epidermal structure between genera and species, it is difficult to identify Ginkgophyta fossils accurately. At this point, the current study sheds light on the quantitative numerical taxonomy of these plant fossils, depending on characterisation of fossil morphology and epidermal microstructures. Through principal component analysis and correlation analysis of specific characters, 15 traits are determined as the key characters in the identification of Ginkgophyta fossils. Cluster analysis was also used to divide the operational taxonomic units into 3 categories and 16 representative groups, which mostly correspond to the traditional classification, with some inconsistencies. Consequently, 8 genera of Ginkgophyta fossils are established as two new taxa: Ginkgophyllum, Rhipidopsis, Sinophyllum,Psygmophyllum and Pseudotorellia, Vittifoliolum, Eretmophyllum, Glossophyllum. In addition, Dicranophyllum should be assigned to Coniferophytina, and Saportaea nervosa can be temporarily attributed to Ginkgo.Finally, the Bayes discriminant model was established for the 38 species of Ginkgophyta fossil plants in 7 genera with relatively certain classification positions, and the discriminant model was tested using literature data. It is believed that the discriminant model has certain accuracy and can be applied to the classification and identification of Ginkgophyta fossil plants in the future.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
南宫若翠发布了新的文献求助10
刚刚
小y完成签到,获得积分10
1秒前
大个应助samskaras采纳,获得10
2秒前
在水一方应助888采纳,获得10
2秒前
小小阿杰发布了新的文献求助10
2秒前
我是老大应助Efei采纳,获得10
2秒前
YE完成签到,获得积分10
2秒前
酷炫灵安完成签到,获得积分10
3秒前
王肖完成签到 ,获得积分10
3秒前
4秒前
Aloysia完成签到,获得积分10
4秒前
李爱国应助东方越彬采纳,获得20
4秒前
东山完成签到 ,获得积分10
4秒前
5秒前
柔弱的书南完成签到,获得积分10
6秒前
SYLH应助lucas采纳,获得10
6秒前
杜杜完成签到,获得积分20
8秒前
含蓄元冬发布了新的文献求助10
8秒前
南宫若翠完成签到,获得积分10
11秒前
12秒前
Orange应助杜杜采纳,获得10
12秒前
无花果应助小小阿杰采纳,获得10
13秒前
13秒前
13秒前
14秒前
14秒前
seanfly完成签到,获得积分10
16秒前
大模型应助静静静采纳,获得10
16秒前
积极的雪莲完成签到,获得积分10
16秒前
17秒前
美丽心情发布了新的文献求助10
17秒前
巧可脆脆发布了新的文献求助10
19秒前
slz发布了新的文献求助10
19秒前
20秒前
20秒前
WY完成签到 ,获得积分10
21秒前
21秒前
22秒前
ED应助奶油W采纳,获得10
22秒前
24秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3956520
求助须知:如何正确求助?哪些是违规求助? 3502600
关于积分的说明 11109235
捐赠科研通 3233391
什么是DOI,文献DOI怎么找? 1787343
邀请新用户注册赠送积分活动 870607
科研通“疑难数据库(出版商)”最低求助积分说明 802123