A Data-Driven Cyber–Physical System Using Deep-Learning Convolutional Neural Networks: Study on False-Data Injection Attacks in an Unmanned Ground Vehicle Under Fault-Tolerant Conditions

计算机科学 卷积神经网络 机器人 人工智能 深度学习 无人地面车辆 机器人学 嵌入式系统 实时计算 计算机安全
作者
Fendy Santoso,Anthony Finn
出处
期刊:IEEE transactions on systems, man, and cybernetics [Institute of Electrical and Electronics Engineers]
卷期号:53 (1): 346-356 被引量:12
标识
DOI:10.1109/tsmc.2022.3170071
摘要

Leveraging the benefits of deep-learning convolutional neural networks, we introduce a new data-driven cyber–physical system specifically designed to address the vulnerability of middleware software, namely, Robot Operating System (ROS), widely implemented in robotics in both civilian and military domains. As for our research platform, we employ the GVR-BOT unmanned ground vehicle, which is a replicate of the U.S. Army ground robot. We focus our study on the ability of the ground robot to operate under fault-tolerant conditions, making it challenging from the standpoint of cybersecurity to differentiate between legitimate and malicious operations. The GVR-BOT ground vehicle belongs to a class of differential drive ground robots and employs ROS in its onboard computer to interact with users. To facilitate deep learning, we develop a large database of images based on the network-traffic data of ROS, describing the dynamics of the GVR-BOT ground robot under legitimate and malicious operations. We use our image database to train and validate the performance of our deep-learning CNN system. Given a set of RGB/grayscale images describing the normalized time-series data representing the dynamics of the GVR-BOT ground robot, the objective of our proposed cybersecurity algorithm is to safeguard the legitimate operation of the ground robot under fault-tolerant conditions, such that any attempts to compromise its performance (e.g., malicious attacks) can be prevented within the minimum detection time. Our research indicates a promising result as our system is capable of detecting malicious attacks with high accuracy while recognizing its legitimate operations with reasonably small false-positive rates.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
5秒前
不配.应助林盒采纳,获得10
6秒前
8秒前
re发布了新的文献求助10
9秒前
11秒前
11秒前
从容芮应助通天塔采纳,获得10
11秒前
从容芮应助通天塔采纳,获得10
11秒前
11秒前
优雅的皮皮虾完成签到,获得积分10
12秒前
樱子完成签到,获得积分10
13秒前
14秒前
咩咩发布了新的文献求助10
14秒前
东阳发布了新的文献求助10
15秒前
科目三应助re采纳,获得10
17秒前
17秒前
大模型应助大PI采纳,获得10
18秒前
酒九发布了新的文献求助20
20秒前
勤恳的铃铛完成签到,获得积分10
21秒前
XingLuo完成签到,获得积分10
21秒前
棉花糖完成签到 ,获得积分10
22秒前
22秒前
cream完成签到,获得积分10
24秒前
24秒前
Jasper应助农大彭于晏采纳,获得10
25秒前
25秒前
25秒前
26秒前
FashionBoy应助会飞的猪采纳,获得10
26秒前
28秒前
ice完成签到 ,获得积分10
28秒前
cream发布了新的文献求助10
29秒前
思源应助Captain采纳,获得10
29秒前
小武wwwww发布了新的文献求助10
30秒前
zhj发布了新的文献求助10
30秒前
不配.应助满意的天采纳,获得20
31秒前
123发布了新的文献求助10
31秒前
安静达发布了新的文献求助10
31秒前
32秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3136629
求助须知:如何正确求助?哪些是违规求助? 2787671
关于积分的说明 7782749
捐赠科研通 2443752
什么是DOI,文献DOI怎么找? 1299386
科研通“疑难数据库(出版商)”最低求助积分说明 625440
版权声明 600954