A Data-Driven Cyber–Physical System Using Deep-Learning Convolutional Neural Networks: Study on False-Data Injection Attacks in an Unmanned Ground Vehicle Under Fault-Tolerant Conditions

计算机科学 卷积神经网络 机器人 人工智能 深度学习 无人地面车辆 机器人学 嵌入式系统 实时计算 计算机安全
作者
Fendy Santoso,Anthony Finn
出处
期刊:IEEE transactions on systems, man, and cybernetics [Institute of Electrical and Electronics Engineers]
卷期号:53 (1): 346-356 被引量:12
标识
DOI:10.1109/tsmc.2022.3170071
摘要

Leveraging the benefits of deep-learning convolutional neural networks, we introduce a new data-driven cyber–physical system specifically designed to address the vulnerability of middleware software, namely, Robot Operating System (ROS), widely implemented in robotics in both civilian and military domains. As for our research platform, we employ the GVR-BOT unmanned ground vehicle, which is a replicate of the U.S. Army ground robot. We focus our study on the ability of the ground robot to operate under fault-tolerant conditions, making it challenging from the standpoint of cybersecurity to differentiate between legitimate and malicious operations. The GVR-BOT ground vehicle belongs to a class of differential drive ground robots and employs ROS in its onboard computer to interact with users. To facilitate deep learning, we develop a large database of images based on the network-traffic data of ROS, describing the dynamics of the GVR-BOT ground robot under legitimate and malicious operations. We use our image database to train and validate the performance of our deep-learning CNN system. Given a set of RGB/grayscale images describing the normalized time-series data representing the dynamics of the GVR-BOT ground robot, the objective of our proposed cybersecurity algorithm is to safeguard the legitimate operation of the ground robot under fault-tolerant conditions, such that any attempts to compromise its performance (e.g., malicious attacks) can be prevented within the minimum detection time. Our research indicates a promising result as our system is capable of detecting malicious attacks with high accuracy while recognizing its legitimate operations with reasonably small false-positive rates.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
K2L发布了新的文献求助10
2秒前
3秒前
121314wld完成签到,获得积分10
3秒前
4秒前
MP_zhang完成签到,获得积分10
4秒前
5秒前
elain完成签到 ,获得积分10
5秒前
bkagyin应助7890733采纳,获得10
5秒前
6秒前
7秒前
酷波er应助Sl采纳,获得10
9秒前
思源应助风中的香寒采纳,获得10
9秒前
9秒前
10秒前
11秒前
11秒前
alexestsah完成签到,获得积分20
11秒前
泽北发布了新的文献求助10
12秒前
李子完成签到,获得积分10
12秒前
chen发布了新的文献求助30
12秒前
烟花应助Jenny采纳,获得10
12秒前
13秒前
王王发布了新的文献求助10
13秒前
科研通AI6应助夙兴夜寐采纳,获得10
14秒前
14秒前
单薄雁玉发布了新的文献求助10
14秒前
共享精神应助自然的鹭洋采纳,获得10
15秒前
15秒前
cc完成签到 ,获得积分10
15秒前
wl2025发布了新的文献求助10
16秒前
16秒前
普查员完成签到,获得积分10
17秒前
lriye完成签到 ,获得积分10
17秒前
尹传博发布了新的文献求助10
17秒前
chen完成签到,获得积分20
18秒前
小李完成签到,获得积分10
19秒前
19秒前
20秒前
20秒前
陈花蕾完成签到 ,获得积分10
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
《机器学习——数据表示学习及应用》 600
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Fiction e non fiction: storia, teorie e forme 500
Routledge Handbook on Spaces of Mental Health and Wellbeing 500
Elle ou lui ? Histoire des transsexuels en France 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5321937
求助须知:如何正确求助?哪些是违规求助? 4463561
关于积分的说明 13890461
捐赠科研通 4354764
什么是DOI,文献DOI怎么找? 2392002
邀请新用户注册赠送积分活动 1385582
关于科研通互助平台的介绍 1355331