A Data-Driven Cyber–Physical System Using Deep-Learning Convolutional Neural Networks: Study on False-Data Injection Attacks in an Unmanned Ground Vehicle Under Fault-Tolerant Conditions

计算机科学 卷积神经网络 机器人 人工智能 深度学习 无人地面车辆 机器人学 嵌入式系统 实时计算 计算机安全
作者
Fendy Santoso,Anthony Finn
出处
期刊:IEEE transactions on systems, man, and cybernetics [Institute of Electrical and Electronics Engineers]
卷期号:53 (1): 346-356 被引量:12
标识
DOI:10.1109/tsmc.2022.3170071
摘要

Leveraging the benefits of deep-learning convolutional neural networks, we introduce a new data-driven cyber–physical system specifically designed to address the vulnerability of middleware software, namely, Robot Operating System (ROS), widely implemented in robotics in both civilian and military domains. As for our research platform, we employ the GVR-BOT unmanned ground vehicle, which is a replicate of the U.S. Army ground robot. We focus our study on the ability of the ground robot to operate under fault-tolerant conditions, making it challenging from the standpoint of cybersecurity to differentiate between legitimate and malicious operations. The GVR-BOT ground vehicle belongs to a class of differential drive ground robots and employs ROS in its onboard computer to interact with users. To facilitate deep learning, we develop a large database of images based on the network-traffic data of ROS, describing the dynamics of the GVR-BOT ground robot under legitimate and malicious operations. We use our image database to train and validate the performance of our deep-learning CNN system. Given a set of RGB/grayscale images describing the normalized time-series data representing the dynamics of the GVR-BOT ground robot, the objective of our proposed cybersecurity algorithm is to safeguard the legitimate operation of the ground robot under fault-tolerant conditions, such that any attempts to compromise its performance (e.g., malicious attacks) can be prevented within the minimum detection time. Our research indicates a promising result as our system is capable of detecting malicious attacks with high accuracy while recognizing its legitimate operations with reasonably small false-positive rates.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI6应助虚拟的画板采纳,获得10
刚刚
1秒前
Flex完成签到,获得积分10
2秒前
科研通AI5应助马到成功采纳,获得10
2秒前
sy发布了新的文献求助10
3秒前
3秒前
4秒前
浮游应助朴素的SCI缔造者采纳,获得10
5秒前
5秒前
溟夔蝶魅完成签到,获得积分20
5秒前
科研小白完成签到,获得积分10
5秒前
6秒前
柴子完成签到,获得积分10
7秒前
心木完成签到 ,获得积分10
7秒前
8秒前
共享精神应助serendipity采纳,获得10
8秒前
John完成签到 ,获得积分10
10秒前
TANG完成签到,获得积分10
10秒前
13223456发布了新的文献求助10
10秒前
kdf发布了新的文献求助10
11秒前
量子星尘发布了新的文献求助10
12秒前
852应助科研通管家采纳,获得10
12秒前
星辰大海应助科研通管家采纳,获得10
12秒前
科研通AI2S应助科研通管家采纳,获得10
12秒前
科研通AI6应助科研通管家采纳,获得10
12秒前
科研通AI5应助科研通管家采纳,获得50
13秒前
爆米花应助科研通管家采纳,获得10
13秒前
丘比特应助科研通管家采纳,获得10
13秒前
浮游应助科研通管家采纳,获得10
13秒前
完美世界应助科研通管家采纳,获得10
13秒前
GPTea应助科研通管家采纳,获得150
13秒前
bkagyin应助科研通管家采纳,获得10
13秒前
加菲丰丰应助科研通管家采纳,获得30
13秒前
科研通AI6应助科研通管家采纳,获得10
13秒前
Orange应助科研通管家采纳,获得10
13秒前
乐乐应助科研通管家采纳,获得10
13秒前
丘比特应助科研通管家采纳,获得10
13秒前
13秒前
sxkoala应助科研通管家采纳,获得30
13秒前
加菲丰丰应助科研通管家采纳,获得30
13秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
LRZ Gitlab附件(3D Matching of TerraSAR-X Derived Ground Control Points to Mobile Mapping Data 附件) 2000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
Handbook of Social and Emotional Learning 800
Risankizumab Versus Ustekinumab For Patients with Moderate to Severe Crohn's Disease: Results from the Phase 3B SEQUENCE Study 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5133576
求助须知:如何正确求助?哪些是违规求助? 4334702
关于积分的说明 13504381
捐赠科研通 4171698
什么是DOI,文献DOI怎么找? 2287273
邀请新用户注册赠送积分活动 1288197
关于科研通互助平台的介绍 1229045