A Data-Driven Cyber–Physical System Using Deep-Learning Convolutional Neural Networks: Study on False-Data Injection Attacks in an Unmanned Ground Vehicle Under Fault-Tolerant Conditions

计算机科学 卷积神经网络 机器人 人工智能 深度学习 无人地面车辆 机器人学 嵌入式系统 实时计算 计算机安全
作者
Fendy Santoso,Anthony Finn
出处
期刊:IEEE transactions on systems, man, and cybernetics [Institute of Electrical and Electronics Engineers]
卷期号:53 (1): 346-356 被引量:12
标识
DOI:10.1109/tsmc.2022.3170071
摘要

Leveraging the benefits of deep-learning convolutional neural networks, we introduce a new data-driven cyber–physical system specifically designed to address the vulnerability of middleware software, namely, Robot Operating System (ROS), widely implemented in robotics in both civilian and military domains. As for our research platform, we employ the GVR-BOT unmanned ground vehicle, which is a replicate of the U.S. Army ground robot. We focus our study on the ability of the ground robot to operate under fault-tolerant conditions, making it challenging from the standpoint of cybersecurity to differentiate between legitimate and malicious operations. The GVR-BOT ground vehicle belongs to a class of differential drive ground robots and employs ROS in its onboard computer to interact with users. To facilitate deep learning, we develop a large database of images based on the network-traffic data of ROS, describing the dynamics of the GVR-BOT ground robot under legitimate and malicious operations. We use our image database to train and validate the performance of our deep-learning CNN system. Given a set of RGB/grayscale images describing the normalized time-series data representing the dynamics of the GVR-BOT ground robot, the objective of our proposed cybersecurity algorithm is to safeguard the legitimate operation of the ground robot under fault-tolerant conditions, such that any attempts to compromise its performance (e.g., malicious attacks) can be prevented within the minimum detection time. Our research indicates a promising result as our system is capable of detecting malicious attacks with high accuracy while recognizing its legitimate operations with reasonably small false-positive rates.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
物理幽灵发布了新的文献求助10
刚刚
yibo发布了新的文献求助10
刚刚
1秒前
科目三应助123采纳,获得10
1秒前
1秒前
虎子完成签到 ,获得积分10
1秒前
llwxx完成签到,获得积分10
2秒前
llxie发布了新的文献求助30
2秒前
Lucas应助江江酱采纳,获得10
2秒前
量子星尘发布了新的文献求助10
3秒前
aaa发布了新的文献求助10
3秒前
4秒前
cjr完成签到,获得积分10
4秒前
wei发布了新的文献求助10
4秒前
wanci应助小赵同学采纳,获得20
5秒前
机灵浩天发布了新的文献求助20
5秒前
ckz关闭了ckz文献求助
7秒前
乖猫要努力应助杨志坚采纳,获得10
7秒前
傅宣完成签到,获得积分10
8秒前
乃惜发布了新的文献求助10
8秒前
8秒前
mmj发布了新的文献求助30
9秒前
12秒前
13秒前
14秒前
iNk应助多多采纳,获得50
14秒前
香蕉觅云应助进取拼搏采纳,获得10
15秒前
马楼完成签到,获得积分10
15秒前
vicky完成签到,获得积分10
16秒前
阿九发布了新的文献求助10
16秒前
FashionBoy应助mmj采纳,获得10
17秒前
17秒前
18秒前
马楼发布了新的文献求助10
19秒前
19秒前
羊羊羊发布了新的文献求助10
19秒前
19秒前
领导范儿应助开整吧采纳,获得80
20秒前
华仔应助聪明胡图图采纳,获得10
21秒前
上官若男应助cheng采纳,获得10
21秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3956566
求助须知:如何正确求助?哪些是违规求助? 3502673
关于积分的说明 11109597
捐赠科研通 3233488
什么是DOI,文献DOI怎么找? 1787408
邀请新用户注册赠送积分活动 870674
科研通“疑难数据库(出版商)”最低求助积分说明 802143