A Data-Driven Cyber–Physical System Using Deep-Learning Convolutional Neural Networks: Study on False-Data Injection Attacks in an Unmanned Ground Vehicle Under Fault-Tolerant Conditions

计算机科学 卷积神经网络 机器人 人工智能 深度学习 无人地面车辆 机器人学 嵌入式系统 实时计算 计算机安全
作者
Fendy Santoso,Anthony Finn
出处
期刊:IEEE transactions on systems, man, and cybernetics [Institute of Electrical and Electronics Engineers]
卷期号:53 (1): 346-356 被引量:12
标识
DOI:10.1109/tsmc.2022.3170071
摘要

Leveraging the benefits of deep-learning convolutional neural networks, we introduce a new data-driven cyber–physical system specifically designed to address the vulnerability of middleware software, namely, Robot Operating System (ROS), widely implemented in robotics in both civilian and military domains. As for our research platform, we employ the GVR-BOT unmanned ground vehicle, which is a replicate of the U.S. Army ground robot. We focus our study on the ability of the ground robot to operate under fault-tolerant conditions, making it challenging from the standpoint of cybersecurity to differentiate between legitimate and malicious operations. The GVR-BOT ground vehicle belongs to a class of differential drive ground robots and employs ROS in its onboard computer to interact with users. To facilitate deep learning, we develop a large database of images based on the network-traffic data of ROS, describing the dynamics of the GVR-BOT ground robot under legitimate and malicious operations. We use our image database to train and validate the performance of our deep-learning CNN system. Given a set of RGB/grayscale images describing the normalized time-series data representing the dynamics of the GVR-BOT ground robot, the objective of our proposed cybersecurity algorithm is to safeguard the legitimate operation of the ground robot under fault-tolerant conditions, such that any attempts to compromise its performance (e.g., malicious attacks) can be prevented within the minimum detection time. Our research indicates a promising result as our system is capable of detecting malicious attacks with high accuracy while recognizing its legitimate operations with reasonably small false-positive rates.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Hello应助aaaa采纳,获得10
刚刚
Owen应助科芒采纳,获得10
刚刚
善学以致用应助辽阳太子采纳,获得10
刚刚
gaw2008完成签到,获得积分10
1秒前
1秒前
李zhu发布了新的文献求助10
1秒前
坦率听荷发布了新的文献求助10
2秒前
2秒前
2秒前
JamesPei应助拼搏惜蕊采纳,获得10
2秒前
ding应助qiuzi采纳,获得10
3秒前
wudizhuzhu233发布了新的文献求助10
3秒前
3秒前
婕婕子完成签到,获得积分10
3秒前
3秒前
一位用户发布了新的文献求助10
4秒前
Nicole发布了新的文献求助10
4秒前
xydmmm发布了新的文献求助10
4秒前
烟花应助dablack采纳,获得10
4秒前
爆米花应助Tomsen采纳,获得10
4秒前
4秒前
糖葫芦发布了新的文献求助10
5秒前
5秒前
6秒前
6秒前
7秒前
浩二完成签到,获得积分10
7秒前
周星星发布了新的文献求助10
7秒前
8秒前
8秒前
大模型应助十三采纳,获得10
8秒前
我必中发布了新的文献求助10
9秒前
9秒前
9秒前
md发布了新的文献求助10
10秒前
10秒前
10秒前
李健的小迷弟应助李萌采纳,获得10
10秒前
保安队长发布了新的文献求助10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
By R. Scott Kretchmar - Practical Philosophy of Sport and Physical Activity - 2nd (second) Edition: 2nd (second) Edition 666
Electrochemistry: Volume 17 600
Physical Chemistry: How Chemistry Works 500
SOLUTIONS Adhesive restoration techniques restorative and integrated surgical procedures 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4942644
求助须知:如何正确求助?哪些是违规求助? 4208241
关于积分的说明 13081377
捐赠科研通 3987311
什么是DOI,文献DOI怎么找? 2183028
邀请新用户注册赠送积分活动 1198648
关于科研通互助平台的介绍 1111020