已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Three Years, Two Papers, One Course Off: Optimal Nonmonetary Reward Policies

校长(计算机安全) 先验与后验 班级(哲学) 价值(数学) 功能(生物学) 数理经济学 经济 计算机科学 单位(环理论) 期限(时间) 微观经济学 数学 人工智能 进化生物学 生物 操作系统 哲学 物理 数学教育 认识论 量子力学 机器学习
作者
Shivam Gupta,Wěi Chén,Milind Dawande,Ganesh Janakiraman
出处
期刊:Management Science [Institute for Operations Research and the Management Sciences]
卷期号:69 (5): 2852-2869 被引量:9
标识
DOI:10.1287/mnsc.2022.4482
摘要

We consider a principal who periodically offers a fixed and costly nonmonetary reward to agents to incentivize them to invest effort over the long run. An agent’s output, as a function of his effort, is a priori uncertain and is worth a fixed per-unit value to the principal. The principal’s goal is to design an attractive reward policy that specifies how the rewards are to be given to an agent over time based on that agent’s past performance. This problem, which we denote by [Formula: see text], is motivated by practical examples from both academia (e.g., a reduced teaching load) and industry (e.g., “Supplier of the Year” awards). The following “limited-term” (LT) reward policy structure has been quite popular in practice. The principal evaluates each agent periodically; if an agent’s performance over a certain (limited) number of periods in the immediate past exceeds a predefined threshold, then the principal rewards him for a certain (limited) number of periods in the immediate future. When agents’ outputs are deterministic in their efforts, we show that there always exists an optimal policy that is an LT policy and also, obtain such a policy. When agents’ outputs are stochastic, we show that the class of LT policies may not contain any optimal policy of problem [Formula: see text] but is guaranteed to contain policies that are arbitrarily near optimal. Given any [Formula: see text], we show how to obtain an LT policy whose performance is within ϵ of that of an optimal policy. This guarantee depends crucially on the use of sufficiently long histories of the agents’ outputs. We also analyze LT policies with short histories and derive structural insights on the role played by (i) the length of the available history and (ii) the variability in the random variable governing an agent’s output. We show that the average performance of these policies is within 5% of the optimum, justifying their popularity in practice. We then introduce and analyze the class of “score-based” reward policies; we show that this class is guaranteed to contain an optimal policy and also, obtain such a policy. Finally, we analyze a generalization in which the principal has a limited number for rewards in any given period and show that the class of score-based policies, with modifications to accommodate the limited availability of the rewards, continues to contain an optimal solution for the principal. This paper was accepted by Jeannette Song, operations management. Supplemental Material: The online appendix is available at https://doi.org/10.1287/mnsc.2022.4482 .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
6秒前
英俊的铭应助T1aNer299采纳,获得10
7秒前
爱学习的小李完成签到 ,获得积分10
10秒前
GRG完成签到 ,获得积分0
11秒前
顺利寄文完成签到,获得积分10
14秒前
jianhan完成签到,获得积分10
14秒前
Demi_Ming完成签到,获得积分10
16秒前
哑巴和喇叭完成签到 ,获得积分10
19秒前
21秒前
dldldldl完成签到 ,获得积分20
26秒前
T1aNer299发布了新的文献求助10
27秒前
小林同学0219完成签到 ,获得积分10
29秒前
LLL发布了新的文献求助10
29秒前
Carmen完成签到,获得积分10
35秒前
ANG完成签到 ,获得积分10
35秒前
39秒前
酒渡完成签到,获得积分10
39秒前
sandra发布了新的文献求助10
40秒前
nbing完成签到,获得积分10
44秒前
Esther应助dawn采纳,获得10
49秒前
53秒前
BW完成签到,获得积分10
54秒前
周冯雪完成签到 ,获得积分10
55秒前
CHERIE发布了新的文献求助10
58秒前
科研通AI2S应助T1aNer299采纳,获得10
58秒前
小二郎应助sandra采纳,获得10
59秒前
LXF关闭了LXF文献求助
1分钟前
yuan发布了新的文献求助10
1分钟前
1分钟前
1分钟前
CHERIE完成签到,获得积分10
1分钟前
1分钟前
在水一方应助耳东陈采纳,获得10
1分钟前
善学以致用应助英勇羿采纳,获得10
1分钟前
居居发布了新的文献求助10
1分钟前
1分钟前
风一样的风干肠完成签到 ,获得积分10
1分钟前
T1aNer299发布了新的文献求助10
1分钟前
1分钟前
1分钟前
高分求助中
Encyclopedia of Quaternary Science Third edition 2025 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Holistic Discourse Analysis 600
Constitutional and Administrative Law 600
Vertebrate Palaeontology, 5th Edition 530
Fiction e non fiction: storia, teorie e forme 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5345529
求助须知:如何正确求助?哪些是违规求助? 4480441
关于积分的说明 13946306
捐赠科研通 4377975
什么是DOI,文献DOI怎么找? 2405510
邀请新用户注册赠送积分活动 1398115
关于科研通互助平台的介绍 1370519