亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Three Years, Two Papers, One Course Off: Optimal Nonmonetary Reward Policies

校长(计算机安全) 先验与后验 班级(哲学) 价值(数学) 功能(生物学) 数理经济学 经济 计算机科学 单位(环理论) 期限(时间) 微观经济学 数学 人工智能 进化生物学 生物 操作系统 哲学 物理 数学教育 认识论 量子力学 机器学习
作者
Shivam Gupta,Wěi Chén,Milind Dawande,Ganesh Janakiraman
出处
期刊:Management Science [Institute for Operations Research and the Management Sciences]
卷期号:69 (5): 2852-2869 被引量:9
标识
DOI:10.1287/mnsc.2022.4482
摘要

We consider a principal who periodically offers a fixed and costly nonmonetary reward to agents to incentivize them to invest effort over the long run. An agent’s output, as a function of his effort, is a priori uncertain and is worth a fixed per-unit value to the principal. The principal’s goal is to design an attractive reward policy that specifies how the rewards are to be given to an agent over time based on that agent’s past performance. This problem, which we denote by [Formula: see text], is motivated by practical examples from both academia (e.g., a reduced teaching load) and industry (e.g., “Supplier of the Year” awards). The following “limited-term” (LT) reward policy structure has been quite popular in practice. The principal evaluates each agent periodically; if an agent’s performance over a certain (limited) number of periods in the immediate past exceeds a predefined threshold, then the principal rewards him for a certain (limited) number of periods in the immediate future. When agents’ outputs are deterministic in their efforts, we show that there always exists an optimal policy that is an LT policy and also, obtain such a policy. When agents’ outputs are stochastic, we show that the class of LT policies may not contain any optimal policy of problem [Formula: see text] but is guaranteed to contain policies that are arbitrarily near optimal. Given any [Formula: see text], we show how to obtain an LT policy whose performance is within ϵ of that of an optimal policy. This guarantee depends crucially on the use of sufficiently long histories of the agents’ outputs. We also analyze LT policies with short histories and derive structural insights on the role played by (i) the length of the available history and (ii) the variability in the random variable governing an agent’s output. We show that the average performance of these policies is within 5% of the optimum, justifying their popularity in practice. We then introduce and analyze the class of “score-based” reward policies; we show that this class is guaranteed to contain an optimal policy and also, obtain such a policy. Finally, we analyze a generalization in which the principal has a limited number for rewards in any given period and show that the class of score-based policies, with modifications to accommodate the limited availability of the rewards, continues to contain an optimal solution for the principal. This paper was accepted by Jeannette Song, operations management. Supplemental Material: The online appendix is available at https://doi.org/10.1287/mnsc.2022.4482 .

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
8秒前
8秒前
搞怪的水彤完成签到 ,获得积分10
13秒前
ding应助谭代涛采纳,获得10
22秒前
55秒前
1分钟前
谭代涛发布了新的文献求助10
1分钟前
默默善愁发布了新的文献求助10
1分钟前
1分钟前
cloe发布了新的文献求助10
1分钟前
神明完成签到 ,获得积分10
1分钟前
科研通AI6应助块块采纳,获得10
1分钟前
1分钟前
cloe完成签到,获得积分20
1分钟前
量子星尘发布了新的文献求助10
2分钟前
科研通AI2S应助谭代涛采纳,获得10
2分钟前
2分钟前
2分钟前
2分钟前
科研通AI6应助块块采纳,获得10
2分钟前
3分钟前
bkagyin应助真实的映寒采纳,获得10
3分钟前
今后应助谭代涛采纳,获得10
4分钟前
英姑应助科研通管家采纳,获得10
4分钟前
慕青应助科研通管家采纳,获得10
4分钟前
4分钟前
谭代涛发布了新的文献求助10
4分钟前
swimming完成签到 ,获得积分10
5分钟前
loitinsuen发布了新的文献求助30
5分钟前
5分钟前
5分钟前
发个15分的完成签到 ,获得积分10
6分钟前
Cris完成签到 ,获得积分10
7分钟前
Orange应助默默善愁采纳,获得10
7分钟前
领导范儿应助谭代涛采纳,获得10
7分钟前
Ava应助明芬采纳,获得10
7分钟前
8分钟前
谭代涛发布了新的文献求助10
8分钟前
8分钟前
领导范儿应助科研通管家采纳,获得10
8分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5599825
求助须知:如何正确求助?哪些是违规求助? 4685587
关于积分的说明 14838670
捐赠科研通 4671878
什么是DOI,文献DOI怎么找? 2538317
邀请新用户注册赠送积分活动 1505554
关于科研通互助平台的介绍 1470946