Three Years, Two Papers, One Course Off: Optimal Nonmonetary Reward Policies

校长(计算机安全) 先验与后验 班级(哲学) 价值(数学) 功能(生物学) 数理经济学 经济 计算机科学 单位(环理论) 期限(时间) 微观经济学 数学 人工智能 物理 哲学 机器学习 操作系统 数学教育 认识论 生物 进化生物学 量子力学
作者
Shivam Gupta,Wěi Chén,Milind Dawande,Ganesh Janakiraman
出处
期刊:Management Science [Institute for Operations Research and the Management Sciences]
卷期号:69 (5): 2852-2869 被引量:9
标识
DOI:10.1287/mnsc.2022.4482
摘要

We consider a principal who periodically offers a fixed and costly nonmonetary reward to agents to incentivize them to invest effort over the long run. An agent’s output, as a function of his effort, is a priori uncertain and is worth a fixed per-unit value to the principal. The principal’s goal is to design an attractive reward policy that specifies how the rewards are to be given to an agent over time based on that agent’s past performance. This problem, which we denote by [Formula: see text], is motivated by practical examples from both academia (e.g., a reduced teaching load) and industry (e.g., “Supplier of the Year” awards). The following “limited-term” (LT) reward policy structure has been quite popular in practice. The principal evaluates each agent periodically; if an agent’s performance over a certain (limited) number of periods in the immediate past exceeds a predefined threshold, then the principal rewards him for a certain (limited) number of periods in the immediate future. When agents’ outputs are deterministic in their efforts, we show that there always exists an optimal policy that is an LT policy and also, obtain such a policy. When agents’ outputs are stochastic, we show that the class of LT policies may not contain any optimal policy of problem [Formula: see text] but is guaranteed to contain policies that are arbitrarily near optimal. Given any [Formula: see text], we show how to obtain an LT policy whose performance is within ϵ of that of an optimal policy. This guarantee depends crucially on the use of sufficiently long histories of the agents’ outputs. We also analyze LT policies with short histories and derive structural insights on the role played by (i) the length of the available history and (ii) the variability in the random variable governing an agent’s output. We show that the average performance of these policies is within 5% of the optimum, justifying their popularity in practice. We then introduce and analyze the class of “score-based” reward policies; we show that this class is guaranteed to contain an optimal policy and also, obtain such a policy. Finally, we analyze a generalization in which the principal has a limited number for rewards in any given period and show that the class of score-based policies, with modifications to accommodate the limited availability of the rewards, continues to contain an optimal solution for the principal. This paper was accepted by Jeannette Song, operations management. Supplemental Material: The online appendix is available at https://doi.org/10.1287/mnsc.2022.4482 .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
zzh完成签到 ,获得积分10
2秒前
北国雪未消完成签到 ,获得积分10
2秒前
YifanWang应助一个小胖子采纳,获得10
7秒前
卡戎529完成签到 ,获得积分10
9秒前
不展完成签到 ,获得积分10
10秒前
MrChew完成签到 ,获得积分10
12秒前
li完成签到 ,获得积分10
12秒前
liaomr完成签到 ,获得积分10
14秒前
xff完成签到 ,获得积分20
14秒前
26秒前
量子星尘发布了新的文献求助10
28秒前
愛研究完成签到,获得积分10
28秒前
smz完成签到 ,获得积分10
28秒前
29秒前
小绵羊发布了新的文献求助10
30秒前
Jeffery426发布了新的文献求助10
31秒前
猪仔5号完成签到 ,获得积分10
33秒前
小绵羊完成签到,获得积分20
38秒前
lhn完成签到 ,获得积分10
39秒前
40秒前
桐桐应助小绵羊采纳,获得10
40秒前
nianshu完成签到 ,获得积分10
42秒前
飞龙在天完成签到,获得积分0
44秒前
48秒前
MM完成签到 ,获得积分10
54秒前
58秒前
58秒前
逗小妹完成签到,获得积分10
1分钟前
1分钟前
1分钟前
逗小妹发布了新的文献求助10
1分钟前
可爱的函函应助瘦瘦采纳,获得10
1分钟前
深情安青应助fantexi113采纳,获得10
1分钟前
梦_筱彩完成签到 ,获得积分10
1分钟前
开拖拉机的医学僧完成签到 ,获得积分10
1分钟前
swordshine完成签到,获得积分10
1分钟前
怕孤独的访云完成签到 ,获得积分10
1分钟前
1分钟前
量子星尘发布了新的文献求助10
1分钟前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3957101
求助须知:如何正确求助?哪些是违规求助? 3503148
关于积分的说明 11111393
捐赠科研通 3234212
什么是DOI,文献DOI怎么找? 1787802
邀请新用户注册赠送积分活动 870776
科研通“疑难数据库(出版商)”最低求助积分说明 802292