Three Years, Two Papers, One Course Off: Optimal Nonmonetary Reward Policies

校长(计算机安全) 先验与后验 班级(哲学) 价值(数学) 功能(生物学) 数理经济学 经济 计算机科学 单位(环理论) 期限(时间) 微观经济学 数学 人工智能 进化生物学 生物 操作系统 哲学 物理 数学教育 认识论 量子力学 机器学习
作者
Shivam Gupta,Wěi Chén,Milind Dawande,Ganesh Janakiraman
出处
期刊:Management Science [Institute for Operations Research and the Management Sciences]
卷期号:69 (5): 2852-2869 被引量:9
标识
DOI:10.1287/mnsc.2022.4482
摘要

We consider a principal who periodically offers a fixed and costly nonmonetary reward to agents to incentivize them to invest effort over the long run. An agent’s output, as a function of his effort, is a priori uncertain and is worth a fixed per-unit value to the principal. The principal’s goal is to design an attractive reward policy that specifies how the rewards are to be given to an agent over time based on that agent’s past performance. This problem, which we denote by [Formula: see text], is motivated by practical examples from both academia (e.g., a reduced teaching load) and industry (e.g., “Supplier of the Year” awards). The following “limited-term” (LT) reward policy structure has been quite popular in practice. The principal evaluates each agent periodically; if an agent’s performance over a certain (limited) number of periods in the immediate past exceeds a predefined threshold, then the principal rewards him for a certain (limited) number of periods in the immediate future. When agents’ outputs are deterministic in their efforts, we show that there always exists an optimal policy that is an LT policy and also, obtain such a policy. When agents’ outputs are stochastic, we show that the class of LT policies may not contain any optimal policy of problem [Formula: see text] but is guaranteed to contain policies that are arbitrarily near optimal. Given any [Formula: see text], we show how to obtain an LT policy whose performance is within ϵ of that of an optimal policy. This guarantee depends crucially on the use of sufficiently long histories of the agents’ outputs. We also analyze LT policies with short histories and derive structural insights on the role played by (i) the length of the available history and (ii) the variability in the random variable governing an agent’s output. We show that the average performance of these policies is within 5% of the optimum, justifying their popularity in practice. We then introduce and analyze the class of “score-based” reward policies; we show that this class is guaranteed to contain an optimal policy and also, obtain such a policy. Finally, we analyze a generalization in which the principal has a limited number for rewards in any given period and show that the class of score-based policies, with modifications to accommodate the limited availability of the rewards, continues to contain an optimal solution for the principal. This paper was accepted by Jeannette Song, operations management. Supplemental Material: The online appendix is available at https://doi.org/10.1287/mnsc.2022.4482 .

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
华仔应助shishuang采纳,获得10
刚刚
英俊的铭应助忐忑的阑香采纳,获得10
1秒前
华仔应助缓慢的秋莲采纳,获得10
2秒前
领导范儿应助往好处想采纳,获得10
2秒前
2秒前
小豆包发布了新的文献求助10
2秒前
3秒前
肖婉婷完成签到,获得积分10
3秒前
BowieHuang应助SSY采纳,获得10
3秒前
稳中的豆沙包完成签到 ,获得积分10
4秒前
媛媛完成签到,获得积分10
4秒前
鲁木发布了新的文献求助10
5秒前
33完成签到,获得积分10
5秒前
chen01hang应助我不是BOB采纳,获得50
6秒前
李健应助彬彬发文章采纳,获得10
6秒前
Honahlee完成签到,获得积分10
6秒前
马明旋发布了新的文献求助20
7秒前
7秒前
8秒前
852应助strongfrog采纳,获得10
8秒前
科研通AI6应助清秀送终采纳,获得10
9秒前
9秒前
9秒前
9秒前
CipherSage应助TearMarks采纳,获得10
9秒前
silin完成签到,获得积分10
9秒前
小豆包完成签到,获得积分20
10秒前
xttju2014发布了新的文献求助10
10秒前
10秒前
super完成签到,获得积分20
11秒前
11秒前
Ak完成签到,获得积分0
11秒前
田小班发布了新的文献求助10
12秒前
Irene发布了新的文献求助10
12秒前
认真日记本完成签到 ,获得积分10
12秒前
www发布了新的文献求助10
12秒前
13秒前
桐桐应助哈哈哈哈哈哈采纳,获得10
13秒前
李小莉0419发布了新的文献求助10
13秒前
Ava应助MC采纳,获得10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5608407
求助须知:如何正确求助?哪些是违规求助? 4693040
关于积分的说明 14876313
捐赠科研通 4717445
什么是DOI,文献DOI怎么找? 2544206
邀请新用户注册赠送积分活动 1509230
关于科研通互助平台的介绍 1472836