Multi-view learning for lymph node metastasis prediction using tumor and nodal radiomics in gastric cancer

特征选择 判别式 人工智能 医学 接收机工作特性 模式识别(心理学) 逻辑回归 计算机科学 无线电技术 内科学
作者
Jing Yang,Li Wang,Jiale Qin,Jichen Du,Mingchao Ding,Tianye Niu,Ren‐Cang Li
出处
期刊:Physics in Medicine and Biology [IOP Publishing]
卷期号:67 (5): 055007-055007 被引量:11
标识
DOI:10.1088/1361-6560/ac515b
摘要

Purpose.This study aims to develop and validate a multi-view learning method by the combination of primary tumor radiomics and lymph node (LN) radiomics for the preoperative prediction of LN status in gastric cancer (GC).Methods.A total of 170 contrast-enhanced abdominal CT images from GC patients were enrolled in this retrospective study. After data preprocessing, two-step feature selection approach including Pearson correlation analysis and supervised feature selection method based on test-time budget (FSBudget) was performed to remove redundance of tumor and LN radiomics features respectively. Two types of discriminative features were then learned by an unsupervised multi-view partial least squares (UMvPLS) for a latent common space on which a logistic regression classifier is trained. Five repeated random hold-out experiments were employed.Results.On 20-dimensional latent common space, area under receiver operating characteristic curve (AUC), precision, accuracy, recall and F1-score are 0.9531 ± 0.0183, 0.9260 ± 0.0184, 0.9136 ± 0.0174, 0.9468 ± 0.0106 and 0.9362 ± 0.0125 for the training cohort respectively, and 0.8984 ± 0.0536, 0.8671 ± 0.0489, 0.8500 ± 0.0599, 0.9118 ± 0.0550 and 0.8882 ± 0.0440 for the validation cohort respectively (reported as mean ± standard deviation). It shows a better discrimination capability than single-view methods, our previous method, and eight baseline methods. When the dimension was reduced to 2, the model not only has effective prediction performance, but also is convenient for data visualization.Conclusions.Our proposed method by integrating radiomics features of primary tumor and LN can be helpful in predicting lymph node metastasis in patients of GC. It shows multi-view learning has great potential for guiding the prognosis and treatment decision-making in GC.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
斯文败类应助震动的平蝶采纳,获得10
1秒前
天天快乐应助伶俐鹤轩采纳,获得10
1秒前
WWWW完成签到,获得积分10
1秒前
wwwwc发布了新的文献求助10
1秒前
2秒前
huhuhu完成签到,获得积分10
3秒前
xiaoKai发布了新的文献求助10
3秒前
4秒前
文艺白柏完成签到 ,获得积分10
5秒前
5秒前
5秒前
5秒前
123发布了新的文献求助10
5秒前
5秒前
刘璇1完成签到,获得积分10
6秒前
8秒前
8秒前
YichaoWang发布了新的文献求助10
8秒前
LELE发布了新的文献求助10
9秒前
junjie发布了新的文献求助30
9秒前
wjt发布了新的文献求助10
9秒前
wwwwc完成签到,获得积分20
10秒前
11秒前
11秒前
12秒前
典雅的静发布了新的文献求助10
13秒前
活在当下发布了新的文献求助10
14秒前
小狗同志006完成签到,获得积分20
14秒前
轻松龙猫发布了新的文献求助10
14秒前
16秒前
ssgecust发布了新的文献求助10
16秒前
16秒前
出其东门完成签到,获得积分10
16秒前
17秒前
tutu发布了新的文献求助10
17秒前
Orange应助小牛牛采纳,获得10
18秒前
小蘑菇应助震动的曲奇采纳,获得10
19秒前
vvSirius完成签到,获得积分10
19秒前
20秒前
八匹马完成签到 ,获得积分10
21秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3135173
求助须知:如何正确求助?哪些是违规求助? 2786162
关于积分的说明 7775843
捐赠科研通 2442066
什么是DOI,文献DOI怎么找? 1298380
科研通“疑难数据库(出版商)”最低求助积分说明 625112
版权声明 600847