Hybridly double-crosslinked carbon nanotube networks with combined strength and toughness via cooperative energy dissipation

韧性 材料科学 纳米复合材料 脆性 碳纳米管 极限抗拉强度 复合材料 消散 刚度 石墨 纳米技术 石墨烯 热力学 物理
作者
Jingui Yu,Chenxi Zhai,Mingchao Wang,Zhuangli Cai,Jingjie Yeo,Qiaoxin Zhang,Changying Zhao,Shangchao Lin
出处
期刊:Nanoscale [Royal Society of Chemistry]
卷期号:14 (6): 2434-2445 被引量:5
标识
DOI:10.1039/d1nr06832f
摘要

Although chemical crosslinking has been extensively explored to enhance the mechanical properties of network-type materials for structural and energy (electrochemical, thermal, etc.) applications, loading-induced energy dissipations usually occur through a single channel that either leads to network brittleness or low strength/stiffness. In this work, we apply coarse-grained molecular dynamics simulations to explore the potential of hybridly double-crosslinked carbon nanotube (CNT) networks as a light weight functional material with combined strength and toughness. While increasing the crosslinking density or strong crosslink composition may, in general, enhance the strength and toughness, further increasing the two parameters would surprisingly lead to deteriorated strength and toughness. We find that double-crosslinked networks can nicely achieve cooperative energy dissipation with minimal structural damage. In particular, the weak crosslinks serve as "sacrificial bonds" to dissipate elastic energies from external loading, while the strong crosslinks act as "structure holders" and break at a much later stage during the tensile test. Therefore, the combination of more than one type of crosslinking with hybrid potential energy landscapes and breaking time scales can prevent premature simultaneous breaking of multiple strong crosslinks. By deploying intermediate amounts of weak and strong crosslinks, we observe an outstanding density-normalized strength of 227-2130 kPa m3 kg-1 as compared to many structural materials and advanced nanocomposites. The crosslinking strategies developed here would pave new avenues for the rational design of functional network materials beyond CNTs, such as hydrogels, nanofibers, and nanocomposites.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
淡定的牛排完成签到,获得积分10
刚刚
dique3hao完成签到 ,获得积分10
1秒前
盼盼小面包完成签到 ,获得积分10
3秒前
科研通AI5应助曼凡采纳,获得10
3秒前
魔幻傲霜完成签到,获得积分10
4秒前
科研通AI2S应助夕诙采纳,获得20
4秒前
蓝天应助lezbj99采纳,获得10
6秒前
6秒前
SciGPT应助电池小能手采纳,获得10
6秒前
Qi发布了新的文献求助10
8秒前
忐忑的雁凡完成签到,获得积分10
8秒前
早日毕业完成签到,获得积分10
8秒前
liuhai发布了新的文献求助10
9秒前
肥仔完成签到,获得积分20
9秒前
张俊伟发布了新的文献求助10
9秒前
李健应助诗和远方采纳,获得10
9秒前
谷晋羽完成签到,获得积分10
10秒前
10秒前
蓝天应助alexyang采纳,获得10
11秒前
钙帮弟子完成签到,获得积分10
11秒前
11秒前
1111111完成签到,获得积分10
12秒前
PJ完成签到,获得积分10
13秒前
13秒前
肥仔发布了新的文献求助20
13秒前
KZ发布了新的文献求助10
14秒前
14秒前
14秒前
ff发布了新的文献求助10
15秒前
yyc666完成签到,获得积分10
16秒前
xfyxxh完成签到,获得积分10
17秒前
18秒前
18秒前
walkeryu发布了新的文献求助10
18秒前
shan完成签到,获得积分10
19秒前
yyc666发布了新的文献求助10
19秒前
紫荆完成签到,获得积分10
19秒前
NexusExplorer应助dick_zhang采纳,获得10
20秒前
gyh发布了新的文献求助10
20秒前
霸气的小土豆完成签到 ,获得积分10
20秒前
高分求助中
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Determination of the boron concentration in diamond using optical spectroscopy 600
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
Founding Fathers The Shaping of America 500
A new house rat (Mammalia: Rodentia: Muridae) from the Andaman and Nicobar Islands 500
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
On the Validity of the Independent-Particle Model and the Sum-rule Approach to the Deeply Bound States in Nuclei 220
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4548118
求助须知:如何正确求助?哪些是违规求助? 3978952
关于积分的说明 12319973
捐赠科研通 3647538
什么是DOI,文献DOI怎么找? 2008814
邀请新用户注册赠送积分活动 1044272
科研通“疑难数据库(出版商)”最低求助积分说明 932888