A YOLOv3-based computer vision system for identification of tea buds and the picking point

人工智能 计算机视觉 计算机科学 分割 机器视觉 点(几何) 鉴定(生物学) 微控制器 数学 嵌入式系统 植物 几何学 生物
作者
Chun‐Lin Chen,Jinzhu Lu,Mingchuan Zhou,Yi Jiao,Min Liao,Zongmei Gao
出处
期刊:Computers and Electronics in Agriculture [Elsevier]
卷期号:198: 107116-107116 被引量:47
标识
DOI:10.1016/j.compag.2022.107116
摘要

Famous tea industry which need to harvest tea buds has great economic benefits. However, the harvesting is time-consuming and labor-intensive, especially with the shortage of labor currently, an intelligent tea bud picking robot is urgently needed. The vision system is a precursor to the development of a tea bud picking robot. To resolve such issues, we applied robotics and deep learning technologies to develop a computer vision system for intelligent picking of tea buds. The system was designed to recognize tea buds and extract their picking points. A method for locating the picking points was proposed based on a combination of YOLO-v3 algorithm, semantic segmentation algorithm, skeleton extraction and minimum bounding rectangle. An intelligent tea end-effector based on Personal Computer and microcontroller collaborative control was designed to solve the picking problem like complex shading and easy breakage. Thus, the picking rate of the overall system was improved. Based on Openmv smart camera embedded mobilenet_v2 algorithm as the visual model of the classification device, so that the quality of tea buds was preliminatively classified. Finally, the effects of different shooting angles and shooting methods as well as the accuracy of target detection and semantic segmentation algorithms on the extraction of tea bud picking points were investigated. The results show that the average accuracy of YOLO-v3 for identification of tea buds is 71.96% and the average horizontal positioning error of the robotic arm is 2.4 mm. Also, the average depth positioning error is 4.2 mm and the accuracy of tea bud picking point extraction is 83%. After the test, the successful picking rate of tea buds is 80% by this computer vision system of robot. The results of this study is potential to develop a machine-based tea picking system for industry and would contribute to the development of precision agriculture.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
asdfghjk完成签到,获得积分10
刚刚
苏78发布了新的文献求助10
2秒前
沾沾波发布了新的文献求助10
4秒前
8秒前
8秒前
甜蜜英姑完成签到,获得积分10
10秒前
早睡早起身体好完成签到,获得积分10
11秒前
烂漫念文完成签到,获得积分10
12秒前
桐桐应助张点心采纳,获得10
12秒前
希望天下0贩的0应助fox采纳,获得10
12秒前
严锦强完成签到,获得积分10
12秒前
12秒前
一一一完成签到 ,获得积分10
13秒前
14秒前
D33sama完成签到,获得积分10
14秒前
baby完成签到,获得积分10
15秒前
啊呀发布了新的文献求助10
18秒前
研友_8yVV0L完成签到 ,获得积分10
18秒前
19秒前
无花果应助QDF采纳,获得10
19秒前
20秒前
wlnhyF完成签到,获得积分10
21秒前
bkagyin应助热心市民小杨采纳,获得10
21秒前
狂野的采梦完成签到,获得积分10
22秒前
ICEBLUE完成签到,获得积分10
22秒前
Miller应助凉啤采纳,获得20
22秒前
张点心发布了新的文献求助10
24秒前
sam完成签到,获得积分10
26秒前
27秒前
27秒前
27秒前
27秒前
TTTT完成签到,获得积分20
29秒前
科研通AI2S应助minr采纳,获得10
29秒前
31秒前
张点心完成签到,获得积分10
31秒前
31秒前
爆米花应助小蚊子采纳,获得10
32秒前
feiten完成签到,获得积分10
32秒前
面向杂志编论文给ee的求助进行了留言
32秒前
高分求助中
Evolution 10000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3147998
求助须知:如何正确求助?哪些是违规求助? 2799021
关于积分的说明 7833250
捐赠科研通 2456174
什么是DOI,文献DOI怎么找? 1307159
科研通“疑难数据库(出版商)”最低求助积分说明 628062
版权声明 601620