A YOLOv3-based computer vision system for identification of tea buds and the picking point

人工智能 计算机视觉 计算机科学 分割 机器视觉 点(几何) 鉴定(生物学) 微控制器 数学 嵌入式系统 植物 几何学 生物
作者
Chun‐Lin Chen,Jinzhu Lu,Mingchuan Zhou,Yi Jiao,Min Liao,Zongmei Gao
出处
期刊:Computers and Electronics in Agriculture [Elsevier BV]
卷期号:198: 107116-107116 被引量:66
标识
DOI:10.1016/j.compag.2022.107116
摘要

Famous tea industry which need to harvest tea buds has great economic benefits. However, the harvesting is time-consuming and labor-intensive, especially with the shortage of labor currently, an intelligent tea bud picking robot is urgently needed. The vision system is a precursor to the development of a tea bud picking robot. To resolve such issues, we applied robotics and deep learning technologies to develop a computer vision system for intelligent picking of tea buds. The system was designed to recognize tea buds and extract their picking points. A method for locating the picking points was proposed based on a combination of YOLO-v3 algorithm, semantic segmentation algorithm, skeleton extraction and minimum bounding rectangle. An intelligent tea end-effector based on Personal Computer and microcontroller collaborative control was designed to solve the picking problem like complex shading and easy breakage. Thus, the picking rate of the overall system was improved. Based on Openmv smart camera embedded mobilenet_v2 algorithm as the visual model of the classification device, so that the quality of tea buds was preliminatively classified. Finally, the effects of different shooting angles and shooting methods as well as the accuracy of target detection and semantic segmentation algorithms on the extraction of tea bud picking points were investigated. The results show that the average accuracy of YOLO-v3 for identification of tea buds is 71.96% and the average horizontal positioning error of the robotic arm is 2.4 mm. Also, the average depth positioning error is 4.2 mm and the accuracy of tea bud picking point extraction is 83%. After the test, the successful picking rate of tea buds is 80% by this computer vision system of robot. The results of this study is potential to develop a machine-based tea picking system for industry and would contribute to the development of precision agriculture.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
huohuo143完成签到,获得积分10
1秒前
英俊的铭应助蜂蜜罐zi采纳,获得10
3秒前
4秒前
xiu完成签到,获得积分10
4秒前
KINDMAGIC发布了新的文献求助10
6秒前
熊逍发布了新的文献求助10
7秒前
Orange应助鱼丸采纳,获得10
7秒前
含蓄垣发布了新的文献求助10
9秒前
11秒前
整齐的霸发布了新的文献求助20
11秒前
11秒前
13秒前
KINDMAGIC完成签到,获得积分10
15秒前
鱼丸发布了新的文献求助10
17秒前
支雨泽发布了新的文献求助10
17秒前
许许完成签到,获得积分10
18秒前
闲听花落完成签到 ,获得积分10
18秒前
橘白应助爱笑的幻姬采纳,获得10
18秒前
西南楚留香完成签到,获得积分10
21秒前
大旭发布了新的文献求助10
22秒前
哔哔鱼发布了新的文献求助10
23秒前
梅子完成签到 ,获得积分10
25秒前
科研通AI5应助RockLee采纳,获得10
25秒前
万能图书馆应助丑丑阿采纳,获得10
26秒前
28秒前
32秒前
32秒前
橘白应助爱笑的幻姬采纳,获得10
32秒前
35秒前
FAN凡完成签到,获得积分20
35秒前
董董发布了新的文献求助10
36秒前
37秒前
37秒前
素简发布了新的文献求助10
38秒前
38秒前
科研通AI5应助支雨泽采纳,获得10
39秒前
jingmishensi发布了新的文献求助10
40秒前
哈哈发布了新的文献求助10
41秒前
41秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Animal Physiology 2000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3741422
求助须知:如何正确求助?哪些是违规求助? 3284072
关于积分的说明 10038118
捐赠科研通 3000880
什么是DOI,文献DOI怎么找? 1646811
邀请新用户注册赠送积分活动 783919
科研通“疑难数据库(出版商)”最低求助积分说明 750478