A YOLOv3-based computer vision system for identification of tea buds and the picking point

人工智能 计算机视觉 计算机科学 分割 机器视觉 点(几何) 鉴定(生物学) 微控制器 数学 嵌入式系统 植物 几何学 生物
作者
Chun‐Lin Chen,Jinzhu Lu,Mingchuan Zhou,Yi Jiao,Min Liao,Zongmei Gao
出处
期刊:Computers and Electronics in Agriculture [Elsevier BV]
卷期号:198: 107116-107116 被引量:66
标识
DOI:10.1016/j.compag.2022.107116
摘要

Famous tea industry which need to harvest tea buds has great economic benefits. However, the harvesting is time-consuming and labor-intensive, especially with the shortage of labor currently, an intelligent tea bud picking robot is urgently needed. The vision system is a precursor to the development of a tea bud picking robot. To resolve such issues, we applied robotics and deep learning technologies to develop a computer vision system for intelligent picking of tea buds. The system was designed to recognize tea buds and extract their picking points. A method for locating the picking points was proposed based on a combination of YOLO-v3 algorithm, semantic segmentation algorithm, skeleton extraction and minimum bounding rectangle. An intelligent tea end-effector based on Personal Computer and microcontroller collaborative control was designed to solve the picking problem like complex shading and easy breakage. Thus, the picking rate of the overall system was improved. Based on Openmv smart camera embedded mobilenet_v2 algorithm as the visual model of the classification device, so that the quality of tea buds was preliminatively classified. Finally, the effects of different shooting angles and shooting methods as well as the accuracy of target detection and semantic segmentation algorithms on the extraction of tea bud picking points were investigated. The results show that the average accuracy of YOLO-v3 for identification of tea buds is 71.96% and the average horizontal positioning error of the robotic arm is 2.4 mm. Also, the average depth positioning error is 4.2 mm and the accuracy of tea bud picking point extraction is 83%. After the test, the successful picking rate of tea buds is 80% by this computer vision system of robot. The results of this study is potential to develop a machine-based tea picking system for industry and would contribute to the development of precision agriculture.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
脑洞疼应助Lesile采纳,获得10
3秒前
充电宝应助Dasiliy采纳,获得10
3秒前
希望天下0贩的0应助Steven采纳,获得10
3秒前
MHY完成签到,获得积分10
3秒前
4秒前
4秒前
研友_VZG7GZ应助163采纳,获得10
4秒前
CipherSage应助bronze采纳,获得10
4秒前
汉堡包应助柒柒球采纳,获得10
7秒前
8秒前
11发布了新的文献求助10
10秒前
桐桐应助Sophist采纳,获得10
11秒前
11秒前
Dasiliy完成签到,获得积分20
12秒前
水加冰糖发布了新的文献求助10
13秒前
13秒前
Liufgui应助娜娜家的大宝贝采纳,获得10
14秒前
顾矜应助Steven采纳,获得10
17秒前
我爱科研发布了新的文献求助10
17秒前
GWZZ发布了新的文献求助30
18秒前
LEEEEYAN发布了新的文献求助10
18秒前
从前慢发布了新的文献求助10
18秒前
Sophist完成签到,获得积分10
20秒前
athruncx完成签到,获得积分10
22秒前
23秒前
果子完成签到 ,获得积分10
25秒前
Jasper应助我爱科研采纳,获得10
26秒前
28秒前
别摆烂了发布了新的文献求助10
28秒前
28秒前
yx_cheng应助KDS采纳,获得10
29秒前
Liufgui应助Steven采纳,获得10
30秒前
32秒前
Dasiliy发布了新的文献求助10
33秒前
33秒前
英姑应助小贩采纳,获得10
36秒前
37秒前
陶醉完成签到,获得积分10
38秒前
别摆烂了发布了新的文献求助10
40秒前
oh应助ext采纳,获得10
40秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Problems of point-blast theory 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3998925
求助须知:如何正确求助?哪些是违规求助? 3538424
关于积分的说明 11274205
捐赠科研通 3277345
什么是DOI,文献DOI怎么找? 1807518
邀请新用户注册赠送积分活动 883909
科研通“疑难数据库(出版商)”最低求助积分说明 810075