A YOLOv3-based computer vision system for identification of tea buds and the picking point

人工智能 计算机视觉 计算机科学 分割 机器视觉 点(几何) 鉴定(生物学) 微控制器 数学 嵌入式系统 植物 几何学 生物
作者
Chun‐Lin Chen,Jinzhu Lu,Mingchuan Zhou,Yi Jiao,Min Liao,Zongmei Gao
出处
期刊:Computers and Electronics in Agriculture [Elsevier]
卷期号:198: 107116-107116 被引量:66
标识
DOI:10.1016/j.compag.2022.107116
摘要

Famous tea industry which need to harvest tea buds has great economic benefits. However, the harvesting is time-consuming and labor-intensive, especially with the shortage of labor currently, an intelligent tea bud picking robot is urgently needed. The vision system is a precursor to the development of a tea bud picking robot. To resolve such issues, we applied robotics and deep learning technologies to develop a computer vision system for intelligent picking of tea buds. The system was designed to recognize tea buds and extract their picking points. A method for locating the picking points was proposed based on a combination of YOLO-v3 algorithm, semantic segmentation algorithm, skeleton extraction and minimum bounding rectangle. An intelligent tea end-effector based on Personal Computer and microcontroller collaborative control was designed to solve the picking problem like complex shading and easy breakage. Thus, the picking rate of the overall system was improved. Based on Openmv smart camera embedded mobilenet_v2 algorithm as the visual model of the classification device, so that the quality of tea buds was preliminatively classified. Finally, the effects of different shooting angles and shooting methods as well as the accuracy of target detection and semantic segmentation algorithms on the extraction of tea bud picking points were investigated. The results show that the average accuracy of YOLO-v3 for identification of tea buds is 71.96% and the average horizontal positioning error of the robotic arm is 2.4 mm. Also, the average depth positioning error is 4.2 mm and the accuracy of tea bud picking point extraction is 83%. After the test, the successful picking rate of tea buds is 80% by this computer vision system of robot. The results of this study is potential to develop a machine-based tea picking system for industry and would contribute to the development of precision agriculture.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小芭乐完成签到 ,获得积分10
1秒前
1秒前
企鹅发布了新的文献求助10
2秒前
2秒前
赘婿应助clean采纳,获得30
2秒前
谨慎的秋灵完成签到,获得积分10
2秒前
yvonne发布了新的文献求助10
3秒前
云野发布了新的文献求助10
5秒前
6秒前
Narnehc发布了新的文献求助10
7秒前
WaNgZY完成签到,获得积分10
8秒前
慕青应助敏感易烟采纳,获得10
9秒前
9秒前
9秒前
9秒前
10秒前
开心灵完成签到 ,获得积分10
10秒前
Rogerthat发布了新的文献求助20
11秒前
13秒前
yvonne完成签到,获得积分10
13秒前
完犊子发布了新的文献求助10
13秒前
Xuhao23发布了新的文献求助20
13秒前
mm完成签到 ,获得积分10
15秒前
短巷发布了新的文献求助10
15秒前
汉堡包应助ZMO采纳,获得10
16秒前
浮游应助完犊子采纳,获得10
16秒前
科研通AI6应助xiong采纳,获得10
16秒前
lianliyou应助完犊子采纳,获得10
16秒前
JamesPei应助犹豫大侠采纳,获得10
17秒前
科研通AI6应助NetSenior采纳,获得10
17秒前
科研通AI6应助受伤小甜瓜采纳,获得10
17秒前
沈薇完成签到,获得积分20
17秒前
18秒前
自信的德天完成签到,获得积分10
18秒前
专注凌文完成签到,获得积分10
18秒前
19秒前
Ava应助包容煎饼采纳,获得10
20秒前
20秒前
21秒前
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Complete Pro-Guide to the All-New Affinity Studio: The A-to-Z Master Manual: Master Vector, Pixel, & Layout Design: Advanced Techniques for Photo, Designer, and Publisher in the Unified Suite 1000
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
The YWCA in China The Making of a Chinese Christian Women’s Institution, 1899–1957 400
Numerical controlled progressive forming as dieless forming 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5400904
求助须知:如何正确求助?哪些是违规求助? 4519974
关于积分的说明 14077499
捐赠科研通 4432892
什么是DOI,文献DOI怎么找? 2433882
邀请新用户注册赠送积分活动 1426087
关于科研通互助平台的介绍 1404695