清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Realizing enhanced energy density in ternary polymer blends by intermolecular structure design

材料科学 三元运算 六氟丙烯 分子间力 电介质 铁电聚合物 聚合物 无定形固体 化学工程 纳米复合材料 氟化物 复合材料 电容器 聚合物混合物 混溶性 铁电性 光电子学 有机化学 分子 共聚物 化学 电压 无机化学 量子力学 程序设计语言 四氟乙烯 计算机科学 工程类 物理
作者
Kai Liu,Yang Liu,Weigang Ma,Naohisa Takesue,Chanatip Samart,Hua Tan,Shenglin Jiang,Zhanming Dou,Yongming Hu,Shujun Zhang,Haibo Zhang
出处
期刊:Chemical Engineering Journal [Elsevier BV]
卷期号:446: 136980-136980 被引量:31
标识
DOI:10.1016/j.cej.2022.136980
摘要

Polymer nanocomposites have been extensively studied for dielectric energy storage applications, however, the relatively low breakdown strength due to inevitable defects and voids limits themselves in the development of the high energy density capacitors while large-scale manufacturing. Herein, we propose a facile strategy to improve the breakdown strength and thus energy density by synergistically designing the intermolecular structure in a ternary polymer blend composed of poly(methyl methacrylate), poly(vinylidene fluoride), and poly(vinylidene fluoride-hexafluoropropylene). We show that the appropriate quenching temperature can decrease crystal size and increase the fraction of the amorphous phase. Meanwhile, by designing the mass ratio of the ferroelectric poly(vinylidene fluoride) and poly(vinylidene fluoride-hexafluoropropylene), it will successfully introduce the intermolecular interaction, which stabilizes the γ-phase in ferroelectric polymers and leads to dense chain packing. All the phenomena contribute to the ultrahigh breakdown strength (850 MV/m), and the optimized blend exhibits a record high discharged energy density of 30 J/cm3. Of particular importance is that a large-area dielectric film with high property uniformity can be fabricated, demonstrating that the proposed design approach can be used as a general technology for mass production.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI2S应助彦嘉采纳,获得10
7秒前
小二郎应助科研通管家采纳,获得10
26秒前
hhh2018687完成签到,获得积分10
32秒前
科研通AI2S应助ceeray23采纳,获得20
40秒前
忘忧Aquarius完成签到,获得积分10
44秒前
wujiwuhui完成签到 ,获得积分10
49秒前
Lny发布了新的文献求助30
1分钟前
sh1ro完成签到,获得积分10
1分钟前
luang应助ceeray23采纳,获得40
1分钟前
1分钟前
ww完成签到,获得积分10
2分钟前
斯文败类应助ceeray23采纳,获得20
2分钟前
机智秋莲发布了新的文献求助20
2分钟前
ChatGPT完成签到,获得积分10
2分钟前
所所应助科研通管家采纳,获得10
2分钟前
2分钟前
2分钟前
ceeray23发布了新的文献求助20
2分钟前
海阔天空完成签到 ,获得积分10
3分钟前
zys发布了新的文献求助10
3分钟前
ffdhdh应助LYZSh采纳,获得10
3分钟前
3分钟前
机智秋莲完成签到,获得积分20
4分钟前
欣欣子完成签到 ,获得积分10
4分钟前
apt完成签到 ,获得积分10
4分钟前
科研通AI2S应助科研通管家采纳,获得10
4分钟前
5分钟前
董可以发布了新的文献求助10
5分钟前
Orange应助董可以采纳,获得10
5分钟前
飞翔的企鹅完成签到,获得积分10
5分钟前
6分钟前
董可以发布了新的文献求助10
6分钟前
LYZSh发布了新的文献求助10
6分钟前
彭于晏应助董可以采纳,获得10
6分钟前
科研通AI2S应助科研通管家采纳,获得10
6分钟前
LYZSh完成签到,获得积分10
6分钟前
鳗鱼飞松完成签到 ,获得积分20
6分钟前
widesky777完成签到 ,获得积分0
6分钟前
霜二完成签到 ,获得积分10
6分钟前
xiaofeixia完成签到 ,获得积分10
7分钟前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3990543
求助须知:如何正确求助?哪些是违规求助? 3532220
关于积分的说明 11256532
捐赠科研通 3271057
什么是DOI,文献DOI怎么找? 1805207
邀请新用户注册赠送积分活动 882302
科研通“疑难数据库(出版商)”最低求助积分说明 809234