SwinFusion: Cross-domain Long-range Learning for General Image Fusion via Swin Transformer

计算机科学 融合 人工智能 变压器 计算机视觉 电气工程 工程类 哲学 电压 语言学
作者
Jiayi Ma,Linfeng Tang,Fan Fan,Jun Huang,Xiaoguang Mei,Yong Ma
出处
期刊:IEEE/CAA Journal of Automatica Sinica [Institute of Electrical and Electronics Engineers]
卷期号:9 (7): 1200-1217 被引量:438
标识
DOI:10.1109/jas.2022.105686
摘要

This study proposes a novel general image fusion framework based on cross-domain long-range learning and Swin Transformer, termed as SwinFusion. On the one hand, an attention-guided cross-domain module is devised to achieve sufficient integration of complementary information and global interaction. More specifically, the proposed method involves an intra-domain fusion unit based on self-attention and an inter-domain fusion unit based on cross-attention, which mine and integrate long dependencies within the same domain and across domains. Through long-range dependency modeling, the network is able to fully implement domain-specific information extraction and cross-domain complementary information integration as well as maintaining the appropriate apparent intensity from a global perspective. In particular, we introduce the shifted windows mechanism into the self-attention and cross-attention, which allows our model to receive images with arbitrary sizes. On the other hand, the multi-scene image fusion problems are generalized to a unified framework with structure maintenance, detail preservation, and proper intensity control. Moreover, an elaborate loss function, consisting of SSIM loss, texture loss, and intensity loss, drives the network to preserve abundant texture details and structural information, as well as presenting optimal apparent intensity. Extensive experiments on both multi-modal image fusion and digital photography image fusion demonstrate the superiority of our SwinFusion compared to the state-of-the-art unified image fusion algorithms and task-specific alternatives. Implementation code and pre-trained weights can be accessed at https://github.com/Linfeng-Tang/SwinFusion.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
有米饭没完成签到 ,获得积分10
1秒前
脑洞疼应助魔幻的访云采纳,获得10
3秒前
希望天下0贩的0应助zzz采纳,获得10
3秒前
jella发布了新的文献求助20
4秒前
Cedricharr1s完成签到,获得积分10
5秒前
Ava应助伈X采纳,获得10
7秒前
10秒前
坚定涑完成签到,获得积分10
11秒前
汤若山完成签到,获得积分10
11秒前
11秒前
积极慕梅应助Edo0109采纳,获得30
13秒前
打打应助茉莉清茶采纳,获得10
13秒前
16秒前
17秒前
Aurora完成签到,获得积分10
18秒前
19秒前
魔幻的访云完成签到,获得积分20
20秒前
一一完成签到,获得积分10
20秒前
zwk完成签到,获得积分10
20秒前
21秒前
22秒前
23秒前
23秒前
科研通AI2S应助沉静的清涟采纳,获得10
24秒前
25秒前
zhangxinan完成签到,获得积分10
28秒前
28秒前
科研通AI2S应助啤酒白菜采纳,获得10
28秒前
Yanglk完成签到,获得积分10
30秒前
LL发布了新的文献求助10
31秒前
一二完成签到,获得积分10
31秒前
制冷剂完成签到 ,获得积分10
31秒前
33秒前
王倩完成签到 ,获得积分10
34秒前
阮逸君发布了新的文献求助10
37秒前
38秒前
CipherSage应助pyc采纳,获得10
40秒前
士艳完成签到,获得积分10
42秒前
XiYang发布了新的文献求助10
44秒前
44秒前
高分求助中
Lire en communiste 1000
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 800
Becoming: An Introduction to Jung's Concept of Individuation 600
中国氢能技术发展路线图研究 500
Communist propaganda: a fact book, 1957-1958 500
Briefe aus Shanghai 1946‒1952 (Dokumente eines Kulturschocks) 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3168424
求助须知:如何正确求助?哪些是违规求助? 2819735
关于积分的说明 7927737
捐赠科研通 2479653
什么是DOI,文献DOI怎么找? 1321059
科研通“疑难数据库(出版商)”最低求助积分说明 632946
版权声明 602463