生物
重编程
诱导多能干细胞
转录组
衰老的大脑
细胞生物学
分区(防火)
人脑
体外
神经科学
基因表达
基因
遗传学
胚胎干细胞
生物化学
认知
酶
作者
Jérôme Mertens,Apuã C.M. Paquola,Manching Ku,Emily M. Hatch,Lena Böhnke,Shauheen Ladjevardi,Sean McGrath,Benjamin C. Campbell,Hyungjun Lee,Joseph R. Herdy,J. Tiago Gonçalves,Tatsuki Toda,Yongsung Kim,Jürgen Winkler,Jun Yao,Martin W. Hetzer,Fred H. Gage
出处
期刊:Cell Stem Cell
[Elsevier]
日期:2015-12-01
卷期号:17 (6): 705-718
被引量:546
标识
DOI:10.1016/j.stem.2015.09.001
摘要
Aging is a major risk factor for many human diseases, and in vitro generation of human neurons is an attractive approach for modeling aging-related brain disorders. However, modeling aging in differentiated human neurons has proved challenging. We generated neurons from human donors across a broad range of ages, either by iPSC-based reprogramming and differentiation or by direct conversion into induced neurons (iNs). While iPSCs and derived neurons did not retain aging-associated gene signatures, iNs displayed age-specific transcriptional profiles and revealed age-associated decreases in the nuclear transport receptor RanBP17. We detected an age-dependent loss of nucleocytoplasmic compartmentalization (NCC) in donor fibroblasts and corresponding iNs and found that reduced RanBP17 impaired NCC in young cells, while iPSC rejuvenation restored NCC in aged cells. These results show that iNs retain important aging-related signatures, thus allowing modeling of the aging process in vitro, and they identify impaired NCC as an important factor in human aging.
科研通智能强力驱动
Strongly Powered by AbleSci AI