A thermodynamic investigation of the hydrolysis of sucrose to fructose and glucose has been performed using microcalorimetry and high-pressure liquid chromatography. The calorimetric measurements were carried out over the temperature range 298-316 K and in sodium acetate buffer (0.1 M, pH 5.65). Enthalpy and heat capacity changes were obtained for the hydrolysis of aqueous sucrose (process A): sucrose(aq) + H2O(liq) = glucose(aq) + fructose (aq). The determination of the equilibrium constant required the use of a thermochemical cycle calculation involving the following processes: (B) glucose 1-phosphate2-(aq) = glucose 6-phosphate2-(aq); (C) sucrose(aq) + HPO4(2-)(aq) = glucose 1-phosphate2-(aq) + fructose(aq); and (D) glucose 6-phosphate2-(aq) + H2O(liq) = glucose(aq) + HPO4(2-)(aq). The equilibrium constants determined at 298.15 K for processes B and C are 17.1 +/- 1.0 and 32.4 +/- 3.0, respectively. Equilibrium data for process D was obtained from the literature, and in conjunction with the data for processes B and C, used to calculate a value of the equilibrium constant for the hydrolysis of aqueous sucrose. Thus, for process A, delta G0 = -26.53 +/- 0.30 kJ mol-1, K0 = (4.44 +/- 0.54) x 10(4), delta H0 = -14.93 +/- 0.16 kJ mol-1, delta So = 38.9 +/- 1.2 J mol-1 K-1, and delta CoP = 57 +/- 14 J mol-1 K-1 at 298.15 K. Additional thermochemical cycles that bear upon the accuracy of these results are examined.