Proof of the quantitative potential of immunofluorescence by mass spectrometry

再现性 免疫荧光 质谱法 定量分析(化学) 免疫组织化学 表皮生长因子受体 化学 定量蛋白质组学 抗体 分析化学(期刊) 病理 色谱法 医学 受体 蛋白质组学 生物化学 免疫学 基因
作者
Maria Toki,Franco Cecchi,Todd Hembrough,Konstantinos N. Syrigos,David L. Rimm
出处
期刊:Laboratory Investigation [Springer Nature]
卷期号:97 (3): 329-334 被引量:37
标识
DOI:10.1038/labinvest.2016.148
摘要

Protein expression in formalin-fixed, paraffin-embedded patient tissue is routinely measured by Immunohistochemistry (IHC). However, IHC has been shown to be subject to variability in sensitivity, specificity and reproducibility, and is generally, at best, considered semi-quantitative. Mass spectrometry (MS) is considered by many to be the criterion standard for protein measurement, offering high sensitivity, specificity, and objective molecular quantification. Here, we seek to show that quantitative immunofluorescence (QIF) with standardization can achieve quantitative results comparable to MS. Epidermal growth factor receptor (EGFR) was measured by quantitative immunofluorescence in 15 cell lines with a wide range of EGFR expression, using different primary antibody concentrations, including the optimal signal-to-noise concentration after quantitative titration. QIF target measurement was then compared to the absolute EGFR concentration measured by Liquid Tissue-selected reaction monitoring mass spectrometry. The best agreement between the two assays was found when the EGFR primary antibody was used at the optimal signal-to-noise concentration, revealing a strong linear regression (R2=0.88). This demonstrates that quantitative optimization of titration by calculation of signal-to-noise ratio allows QIF to be standardized to MS and can therefore be used to assess absolute protein concentration in a linear and reproducible manner.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
刚刚
Tea完成签到,获得积分10
1秒前
1秒前
完美世界应助淡然向松采纳,获得10
1秒前
bkagyin应助100采纳,获得10
2秒前
zlenetr完成签到,获得积分10
2秒前
2秒前
3秒前
搜集达人应助ymm采纳,获得10
4秒前
琪小7完成签到,获得积分10
4秒前
汉堡发布了新的文献求助10
4秒前
体贴念梦完成签到,获得积分10
5秒前
轨迹永远发布了新的文献求助10
5秒前
cccccc发布了新的文献求助10
5秒前
刘兄发布了新的文献求助10
5秒前
6秒前
6秒前
华仔应助袁大头采纳,获得10
6秒前
打打应助舒适的平蓝采纳,获得10
7秒前
wu完成签到,获得积分10
7秒前
7秒前
彭于晏应助迅速凡霜采纳,获得10
7秒前
天天快乐应助gu采纳,获得10
8秒前
RC_Wang应助habibi采纳,获得10
8秒前
kuku发布了新的文献求助10
8秒前
酷炫非笑发布了新的文献求助10
8秒前
平凡发布了新的文献求助10
8秒前
9秒前
鱼雷发布了新的文献求助10
9秒前
10秒前
文武兼备完成签到,获得积分10
11秒前
体贴念梦发布了新的文献求助10
11秒前
哒哒哒驳回了DS应助
11秒前
An发布了新的文献求助20
12秒前
skmksd发布了新的文献求助10
13秒前
FashionBoy应助杨树采纳,获得10
13秒前
13秒前
边际完成签到,获得积分10
13秒前
高分求助中
Continuum Thermodynamics and Material Modelling 4000
Production Logging: Theoretical and Interpretive Elements 2700
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
El viaje de una vida: Memorias de María Lecea 800
Novel synthetic routes for multiple bond formation between Si, Ge, and Sn and the d- and p-block elements 700
Neuromuscular and Electrodiagnostic Medicine Board Review 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3515049
求助须知:如何正确求助?哪些是违规求助? 3097391
关于积分的说明 9235300
捐赠科研通 2792358
什么是DOI,文献DOI怎么找? 1532422
邀请新用户注册赠送积分活动 712063
科研通“疑难数据库(出版商)”最低求助积分说明 707107