A modified Leslie–Gower predator–prey model with ratio‐dependent functional response and alternative food for the predator

数学 同宿轨道 极限环 霍普夫分叉 分叉 吸引子 人口 应用数学 鞍结分岔 相平面 同宿分支 平衡点 博格达诺夫-塔肯分岔 马鞍 数学分析 极限(数学) 人口模型 微分方程 数学优化 非线性系统 物理 人口学 量子力学 社会学
作者
José D. Flores,Eduardo González‐Olivares
出处
期刊:Mathematical Methods in The Applied Sciences [Wiley]
卷期号:40 (7): 2313-2328 被引量:13
标识
DOI:10.1002/mma.4172
摘要

In this work, a modified Leslie–Gower predator–prey model is analyzed, considering an alternative food for the predator and a ratio‐dependent functional response to express the species interaction. The system is well defined in the entire first quadrant except at the origin ( 0 , 0 ) . Given the importance of the origin ( 0 , 0 ) as it represents the extinction of both populations, it is convenient to provide a continuous extension of the system to the origin. By changing variables and a time rescaling, we obtain a polynomial differential equations system, which is topologically equivalent to the original one, obtaining that the non‐hyperbolic equilibrium point ( 0 , 0 ) in the new system is a repellor for all parameter values. Therefore, our novel model presents a remarkable difference with other models using ratio‐dependent functional response. We establish conditions on the parameter values for the existence of up to two positive equilibrium points; when this happen, one of them is always a hyperbolic saddle point, and the other can be either an attractor or a repellor surrounded by at least one limit cycle. We also show the existence of a separatrix curve dividing the behavior of the trajectories in the phase plane. Moreover, we establish parameter sets for which a homoclinic curve exits, and we show the existence of saddle‐node bifurcation, Hopf bifurcation, Bogdanov–Takens bifurcation, and homoclinic bifurcation. An important feature in this model is that the prey population can go to extinction; meanwhile, population of predators can survive because of the consumption of alternative food in the absence of prey. In addition, the prey population can attain their carrying capacity level when predators go to extinction. We demonstrate that the solutions are non‐negatives and bounded (dissipativity and permanence of population in many other works). Furthermore, some simulations to reinforce our mathematical results are shown, and we further discuss their ecological meanings. Copyright © 2017 John Wiley & Sons, Ltd.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
情怀应助wq采纳,获得10
刚刚
1秒前
量子星尘发布了新的文献求助10
4秒前
猫小乐C完成签到,获得积分10
4秒前
4秒前
整齐灵阳完成签到,获得积分10
7秒前
充电宝应助机智的含蕾采纳,获得30
9秒前
lewis17发布了新的文献求助30
9秒前
10秒前
老神在在完成签到,获得积分10
11秒前
adi完成签到,获得积分10
13秒前
阳光he完成签到,获得积分10
13秒前
14秒前
0814d完成签到,获得积分10
14秒前
14秒前
233完成签到,获得积分10
15秒前
徐州檀完成签到,获得积分10
15秒前
16秒前
田様应助orang采纳,获得10
16秒前
17秒前
jagger完成签到,获得积分10
17秒前
17秒前
18秒前
天天快乐应助lewis17采纳,获得10
18秒前
R_完成签到 ,获得积分10
19秒前
淡然平蓝完成签到 ,获得积分10
19秒前
Lucille发布了新的文献求助10
20秒前
21秒前
666发布了新的文献求助50
21秒前
黄毅完成签到,获得积分10
21秒前
22秒前
23秒前
我不完成签到,获得积分10
23秒前
单雅慧发布了新的文献求助10
23秒前
一个冷漠无情的人完成签到,获得积分10
23秒前
007发布了新的文献求助10
24秒前
加贝完成签到 ,获得积分10
25秒前
李健的小迷弟应助李可汗采纳,获得10
26秒前
一二三发布了新的文献求助10
26秒前
杨哈哈完成签到,获得积分10
27秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A new approach to the extrapolation of accelerated life test data 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3954395
求助须知:如何正确求助?哪些是违规求助? 3500338
关于积分的说明 11099177
捐赠科研通 3230855
什么是DOI,文献DOI怎么找? 1786171
邀请新用户注册赠送积分活动 869840
科研通“疑难数据库(出版商)”最低求助积分说明 801673