A modified Leslie–Gower predator–prey model with ratio‐dependent functional response and alternative food for the predator

数学 同宿轨道 极限环 霍普夫分叉 分叉 吸引子 人口 应用数学 鞍结分岔 相平面 同宿分支 平衡点 博格达诺夫-塔肯分岔 马鞍 数学分析 极限(数学) 人口模型 微分方程 数学优化 非线性系统 物理 人口学 量子力学 社会学
作者
José D. Flores,Eduardo González‐Olivares
出处
期刊:Mathematical Methods in The Applied Sciences [Wiley]
卷期号:40 (7): 2313-2328 被引量:13
标识
DOI:10.1002/mma.4172
摘要

In this work, a modified Leslie–Gower predator–prey model is analyzed, considering an alternative food for the predator and a ratio‐dependent functional response to express the species interaction. The system is well defined in the entire first quadrant except at the origin ( 0 , 0 ) . Given the importance of the origin ( 0 , 0 ) as it represents the extinction of both populations, it is convenient to provide a continuous extension of the system to the origin. By changing variables and a time rescaling, we obtain a polynomial differential equations system, which is topologically equivalent to the original one, obtaining that the non‐hyperbolic equilibrium point ( 0 , 0 ) in the new system is a repellor for all parameter values. Therefore, our novel model presents a remarkable difference with other models using ratio‐dependent functional response. We establish conditions on the parameter values for the existence of up to two positive equilibrium points; when this happen, one of them is always a hyperbolic saddle point, and the other can be either an attractor or a repellor surrounded by at least one limit cycle. We also show the existence of a separatrix curve dividing the behavior of the trajectories in the phase plane. Moreover, we establish parameter sets for which a homoclinic curve exits, and we show the existence of saddle‐node bifurcation, Hopf bifurcation, Bogdanov–Takens bifurcation, and homoclinic bifurcation. An important feature in this model is that the prey population can go to extinction; meanwhile, population of predators can survive because of the consumption of alternative food in the absence of prey. In addition, the prey population can attain their carrying capacity level when predators go to extinction. We demonstrate that the solutions are non‐negatives and bounded (dissipativity and permanence of population in many other works). Furthermore, some simulations to reinforce our mathematical results are shown, and we further discuss their ecological meanings. Copyright © 2017 John Wiley & Sons, Ltd.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Liuying2809发布了新的文献求助10
刚刚
gejinxin给gejinxin的求助进行了留言
1秒前
1秒前
彭于晏应助美满的红酒采纳,获得10
1秒前
彭于晏应助毛健采纳,获得10
1秒前
善学以致用应助JunHan采纳,获得10
2秒前
跳跃发布了新的文献求助10
2秒前
2秒前
黄凯发布了新的文献求助10
2秒前
量子星尘发布了新的文献求助10
3秒前
6秒前
Shan发布了新的文献求助10
6秒前
量子星尘发布了新的文献求助10
8秒前
充电宝应助zzzz采纳,获得10
8秒前
9秒前
bunny发布了新的文献求助10
9秒前
12秒前
13秒前
JunHan发布了新的文献求助10
13秒前
shlin完成签到,获得积分10
14秒前
14秒前
zz应助摸鱼大王采纳,获得10
15秒前
猪猪hero应助摸鱼大王采纳,获得10
15秒前
wanci应助hh采纳,获得10
15秒前
Owen应助周周采纳,获得10
16秒前
xy820完成签到,获得积分20
17秒前
Shan完成签到,获得积分10
18秒前
天天学习完成签到,获得积分10
19秒前
Zer完成签到,获得积分0
19秒前
19秒前
20秒前
zzzzzz完成签到,获得积分10
20秒前
xy820发布了新的文献求助10
20秒前
21秒前
科研通AI6.1应助深情素阴采纳,获得10
21秒前
22秒前
打打应助小怪兽不吃人采纳,获得10
22秒前
科研通AI6.1应助bunny采纳,获得10
23秒前
风吃掉月亮完成签到,获得积分10
24秒前
风趣绯完成签到,获得积分20
24秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 40000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Ägyptische Geschichte der 21.–30. Dynastie 2500
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5742790
求助须知:如何正确求助?哪些是违规求助? 5410347
关于积分的说明 15345735
捐赠科研通 4883864
什么是DOI,文献DOI怎么找? 2625403
邀请新用户注册赠送积分活动 1574207
关于科研通互助平台的介绍 1531165