卷积神经网络
心跳
QRS波群
心房颤动
计算机科学
心房扑动
心动过速
人工智能
室性心动过速
灵敏度(控制系统)
模式识别(心理学)
心电图
心脏病学
内科学
医学
工程类
计算机安全
电子工程
作者
U. Rajendra Acharya,Hamido Fujita,Oh Shu Lih,Yuki Hagiwara,Jen Hong Tan,Muhammad Adam
标识
DOI:10.1016/j.ins.2017.04.012
摘要
Our cardiovascular system weakens and is more prone to arrhythmia as we age. An arrhythmia is an abnormal heartbeat rhythm which can be life-threatening. Atrial fibrillation (Afib), atrial flutter (Afl), and ventricular fibrillation (Vfib) are the recurring life-threatening arrhythmias that affect the elderly population. An electrocardiogram (ECG) is the principal diagnostic tool employed to record and interpret ECG signals. These signals contain information about the different types of arrhythmias. However, due to the complexity and non-linearity of ECG signals, it is difficult to manually analyze these signals. Moreover, the interpretation of ECG signals is subjective and might vary between the experts. Hence, a computer-aided diagnosis (CAD) system is proposed. The CAD system will ensure that the assessment of ECG signals is objective and accurate. In this work, we present a convolutional neural network (CNN) technique to automatically detect the different ECG segments. Our algorithm consists of an eleven-layer deep CNN with the output layer of four neurons, each representing the normal (Nsr), Afib, Afl, and Vfib ECG class. In this work, we have used ECG signals of two seconds and five seconds’ durations without QRS detection. We achieved an accuracy, sensitivity, and specificity of 92.50%, 98.09%, and 93.13% respectively for two seconds of ECG segments. We obtained an accuracy of 94.90%, the sensitivity of 99.13%, and specificity of 81.44% for five seconds of ECG duration. This proposed algorithm can serve as an adjunct tool to assist clinicians in confirming their diagnosis.
科研通智能强力驱动
Strongly Powered by AbleSci AI