清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Insight into Electrochemical CO2 Reduction on Surface-Molecule-Mediated Ag Nanoparticles

胺气处理 化学 催化作用 选择性 分子 功能群 电催化剂 电化学 密度泛函理论 硫醇 反应性(心理学) 组合化学 纳米颗粒 材料科学 光化学 有机化学 纳米技术 计算化学 聚合物 物理化学 电极 病理 医学 替代医学
作者
Cheonghee Kim,Taedaehyeong Eom,Michael Shincheon Jee,Hyejin Jung,Hyungjun Kim,Byoung Koun Min,Yun Jeong Hwang
出处
期刊:ACS Catalysis 卷期号:7 (1): 779-785 被引量:231
标识
DOI:10.1021/acscatal.6b01862
摘要

The electrochemical CO2 reduction reaction to form valued hydrocarbon molecules is an attractive process, because it can be coupled with renewable energy resources for carbon recycling. For an efficient CO2 conversion, designing a catalyst with high activity and selectivity is crucial, because the CO2 reduction reaction in aqueous media competes with the hydrogen evolution reaction (HER) intensely. We have developed a strategy to tune CO2 reduction activity by modulating the binding energies of the intermediates on the electrocatalyst surfaces with the assistance of molecules that contain the functional group. We discovered that the amine functional group on Ag nanoparticle is highly effective in improving selective CO production (Faradaic efficiency to 94.2%) by selectively suppressing HER, while the thiol group rather increases HER activity. A density functional theory (DFT) calculation supports the theory that attaching amine molecules to Ag nanoparticles destabilizes the hydrogen binding, which effectively suppresses HER selectively, while an opposite tendency is found with thiol molecules. In addition, changes in the product selectivity, depending on the functional group, are also observed when the organic molecules are added after nanoparticle synthesis or nanoparticles are immobilized with an amine (or thiol)-containing anchoring agent. CO Faradaic efficiencies were consistently improved when the Ag nanoparticle was modified with amine groups, compared with that of its thiol counterpart.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
5秒前
18秒前
20秒前
香蕉觅云应助lda采纳,获得10
22秒前
呆呆的猕猴桃完成签到 ,获得积分10
27秒前
31秒前
44秒前
1分钟前
1分钟前
小强完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
樱桃猴子应助白华苍松采纳,获得10
1分钟前
1分钟前
2分钟前
tufei发布了新的文献求助10
2分钟前
2分钟前
tufei完成签到,获得积分10
2分钟前
2分钟前
小星云发布了新的文献求助100
2分钟前
川藏客完成签到 ,获得积分10
2分钟前
2分钟前
Arthur完成签到,获得积分10
2分钟前
2分钟前
Owen应助小星云采纳,获得10
2分钟前
樱桃猴子应助白华苍松采纳,获得10
2分钟前
2分钟前
3分钟前
3分钟前
大个应助白华苍松采纳,获得10
3分钟前
3分钟前
muriel完成签到,获得积分10
3分钟前
淡淡醉波wuliao完成签到 ,获得积分10
3分钟前
tutu完成签到,获得积分10
4分钟前
4分钟前
HJJHJH完成签到,获得积分20
4分钟前
HJJHJH发布了新的文献求助30
4分钟前
汉堡包应助Nan采纳,获得10
4分钟前
4分钟前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
1.3μm GaAs基InAs量子点材料生长及器件应用 1000
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3526584
求助须知:如何正确求助?哪些是违规求助? 3107022
关于积分的说明 9282092
捐赠科研通 2804622
什么是DOI,文献DOI怎么找? 1539534
邀请新用户注册赠送积分活动 716583
科研通“疑难数据库(出版商)”最低求助积分说明 709581