WGCNA Application to Proteomic and Metabolomic Data Analysis

鉴定(生物学) 代谢组学 计算生物学 蛋白质组学 计算机科学 吞吐量 数据挖掘 数据科学 生物 生物信息学 基因 遗传学 植物 电信 无线
作者
Guangsheng Pei,Lin Chen,W. Zhang
出处
期刊:Methods in Enzymology [Academic Press]
卷期号:585: 135-158 被引量:381
标识
DOI:10.1016/bs.mie.2016.09.016
摘要

Progresses in mass spectrometric instrumentation and bioinformatics identification algorithms made over the past decades allow quantitative measurements of relative or absolute protein/metabolite amounts in cells in a high-throughput manner, which has significantly expedited the exploration into functions and dynamics of complex biological systems. However, interpretation of high-throughput data is often restricted by the limited availability of suitable computational methods and enough statistical power. While many computational methodologies have been developed in the past decades to address the issue, it becomes clear that network-focused rather than individual gene/protein-focused strategies would be more appropriate to obtain a complete picture of cellular responses. Recently, an R analytical package named as weighted gene coexpression network analysis (WGCNA) was developed and applied to high-throughput microarray or RNA-seq datasets since it provides a systems-level insights, high sensitivity to low abundance, or small fold changes genes without any information loss. The approach was also recently applied to proteomic and metabolomic data analysis. However, due to the fact that low coverage of the current proteomic and metabolomic analytical technologies, causing the format of datasets are often incomplete, the method needs to be modified so that it can be properly utilized for meaningful biologically interpretation. In this chapter, we provide a detailed introduction of the modified protocol and its tutorials for applying the WGCNA approach in analyzing proteomic and metabolomic datasets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
1秒前
1秒前
希望天下0贩的0应助晨曦采纳,获得10
1秒前
樱桃炸弹完成签到,获得积分10
2秒前
2秒前
DrKe完成签到,获得积分10
3秒前
3秒前
今夕何夕发布了新的文献求助10
3秒前
汉堡包应助复方蛋酥卷采纳,获得10
3秒前
4秒前
123发布了新的文献求助10
5秒前
6秒前
核桃发布了新的文献求助10
7秒前
落叶无声发布了新的文献求助10
7秒前
肖兰发布了新的文献求助10
8秒前
今后应助激昂的逊采纳,获得10
9秒前
9秒前
哈哈哈哈发布了新的文献求助10
9秒前
机灵的盼波完成签到 ,获得积分10
10秒前
激动的从霜完成签到,获得积分10
10秒前
烟泽亮完成签到,获得积分10
12秒前
李孟完成签到 ,获得积分10
12秒前
烟花应助Nagisa采纳,获得10
13秒前
游子瑶发布了新的文献求助10
14秒前
微霞完成签到,获得积分10
15秒前
15秒前
shuoliu完成签到 ,获得积分10
17秒前
可乐鲨鱼翅完成签到,获得积分10
17秒前
17秒前
19秒前
20秒前
1874完成签到,获得积分10
20秒前
21秒前
21秒前
21秒前
22秒前
田田完成签到,获得积分10
22秒前
22秒前
高分求助中
Aerospace Standards Index - 2025 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
Teaching Language in Context (Third Edition) 1000
List of 1,091 Public Pension Profiles by Region 961
流动的新传统主义与新生代农民工的劳动力再生产模式变迁 500
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5449176
求助须知:如何正确求助?哪些是违规求助? 4557406
关于积分的说明 14262954
捐赠科研通 4480266
什么是DOI,文献DOI怎么找? 2454462
邀请新用户注册赠送积分活动 1445109
关于科研通互助平台的介绍 1420965