WGCNA Application to Proteomic and Metabolomic Data Analysis

鉴定(生物学) 代谢组学 计算生物学 蛋白质组学 计算机科学 吞吐量 数据挖掘 数据科学 生物 生物信息学 基因 遗传学 植物 电信 无线
作者
Guangsheng Pei,Lin Chen,W. Zhang
出处
期刊:Methods in Enzymology [Academic Press]
卷期号:585: 135-158 被引量:381
标识
DOI:10.1016/bs.mie.2016.09.016
摘要

Progresses in mass spectrometric instrumentation and bioinformatics identification algorithms made over the past decades allow quantitative measurements of relative or absolute protein/metabolite amounts in cells in a high-throughput manner, which has significantly expedited the exploration into functions and dynamics of complex biological systems. However, interpretation of high-throughput data is often restricted by the limited availability of suitable computational methods and enough statistical power. While many computational methodologies have been developed in the past decades to address the issue, it becomes clear that network-focused rather than individual gene/protein-focused strategies would be more appropriate to obtain a complete picture of cellular responses. Recently, an R analytical package named as weighted gene coexpression network analysis (WGCNA) was developed and applied to high-throughput microarray or RNA-seq datasets since it provides a systems-level insights, high sensitivity to low abundance, or small fold changes genes without any information loss. The approach was also recently applied to proteomic and metabolomic data analysis. However, due to the fact that low coverage of the current proteomic and metabolomic analytical technologies, causing the format of datasets are often incomplete, the method needs to be modified so that it can be properly utilized for meaningful biologically interpretation. In this chapter, we provide a detailed introduction of the modified protocol and its tutorials for applying the WGCNA approach in analyzing proteomic and metabolomic datasets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
hgzb完成签到,获得积分10
刚刚
刚刚
Lazyazy_完成签到 ,获得积分10
刚刚
大模型应助micett采纳,获得10
刚刚
JING发布了新的文献求助10
1秒前
茗苓发布了新的文献求助10
1秒前
酷波er应助苏苏采纳,获得10
1秒前
桐桐应助lizhian采纳,获得10
1秒前
田様应助kaerless采纳,获得10
2秒前
独享发布了新的文献求助10
2秒前
2秒前
2秒前
领导范儿应助tt采纳,获得10
3秒前
啊哈完成签到,获得积分10
4秒前
4秒前
李爱国应助jinze采纳,获得10
4秒前
子午线发布了新的文献求助10
4秒前
5秒前
6秒前
正直的沛凝完成签到,获得积分10
6秒前
烟酒僧完成签到,获得积分10
6秒前
清如完成签到 ,获得积分10
6秒前
6秒前
6秒前
7秒前
西有的裤发布了新的文献求助10
7秒前
doudou发布了新的文献求助10
7秒前
JING完成签到,获得积分10
7秒前
我没钱完成签到 ,获得积分10
7秒前
CipherSage应助麟书夷采纳,获得10
8秒前
8秒前
天天快乐应助xsk861777采纳,获得10
8秒前
1.1发布了新的文献求助10
9秒前
晓汁完成签到,获得积分10
9秒前
qi完成签到,获得积分10
10秒前
jobs发布了新的文献求助20
10秒前
雪sung发布了新的文献求助10
11秒前
Liao完成签到,获得积分10
12秒前
12秒前
WangYZ发布了新的文献求助10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5648325
求助须知:如何正确求助?哪些是违规求助? 4775345
关于积分的说明 15043906
捐赠科研通 4807336
什么是DOI,文献DOI怎么找? 2570747
邀请新用户注册赠送积分活动 1527484
关于科研通互助平台的介绍 1486437