WGCNA Application to Proteomic and Metabolomic Data Analysis

鉴定(生物学) 代谢组学 计算生物学 蛋白质组学 计算机科学 吞吐量 数据挖掘 数据科学 生物 生物信息学 基因 遗传学 植物 电信 无线
作者
Guangsheng Pei,Lin Chen,W. Zhang
出处
期刊:Methods in Enzymology 卷期号:: 135-158 被引量:272
标识
DOI:10.1016/bs.mie.2016.09.016
摘要

Progresses in mass spectrometric instrumentation and bioinformatics identification algorithms made over the past decades allow quantitative measurements of relative or absolute protein/metabolite amounts in cells in a high-throughput manner, which has significantly expedited the exploration into functions and dynamics of complex biological systems. However, interpretation of high-throughput data is often restricted by the limited availability of suitable computational methods and enough statistical power. While many computational methodologies have been developed in the past decades to address the issue, it becomes clear that network-focused rather than individual gene/protein-focused strategies would be more appropriate to obtain a complete picture of cellular responses. Recently, an R analytical package named as weighted gene coexpression network analysis (WGCNA) was developed and applied to high-throughput microarray or RNA-seq datasets since it provides a systems-level insights, high sensitivity to low abundance, or small fold changes genes without any information loss. The approach was also recently applied to proteomic and metabolomic data analysis. However, due to the fact that low coverage of the current proteomic and metabolomic analytical technologies, causing the format of datasets are often incomplete, the method needs to be modified so that it can be properly utilized for meaningful biologically interpretation. In this chapter, we provide a detailed introduction of the modified protocol and its tutorials for applying the WGCNA approach in analyzing proteomic and metabolomic datasets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
FDDZG发布了新的文献求助10
1秒前
虚拟的函完成签到,获得积分10
1秒前
1秒前
多情的夜安完成签到,获得积分20
1秒前
调研昵称发布了新的文献求助50
1秒前
丰富的高山完成签到,获得积分10
2秒前
2秒前
2秒前
人可完成签到,获得积分10
2秒前
MrH完成签到,获得积分10
3秒前
3秒前
丘比特应助Z女士采纳,获得10
3秒前
雍尔冬完成签到,获得积分20
3秒前
3秒前
aa完成签到,获得积分10
4秒前
任晓宇完成签到 ,获得积分10
4秒前
4秒前
5秒前
暖冬完成签到,获得积分10
6秒前
夜秋瞳发布了新的文献求助10
6秒前
苏苏发布了新的文献求助10
6秒前
7秒前
小蘑菇应助叶白山采纳,获得10
7秒前
南敏株完成签到,获得积分10
7秒前
8秒前
史道夫发布了新的文献求助10
8秒前
搜集达人应助粑粑采纳,获得10
8秒前
llzuo发布了新的文献求助10
8秒前
田様应助张张采纳,获得10
8秒前
不奈何完成签到,获得积分10
9秒前
10秒前
欧耶欧椰完成签到 ,获得积分10
10秒前
11秒前
xiaoguang li发布了新的文献求助10
11秒前
文文发布了新的文献求助10
11秒前
zjsu_zpz完成签到,获得积分10
11秒前
兰禅子发布了新的文献求助100
12秒前
王洵完成签到,获得积分10
12秒前
13秒前
Akim应助张奕冰采纳,获得10
14秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3147236
求助须知:如何正确求助?哪些是违规求助? 2798534
关于积分的说明 7829576
捐赠科研通 2455246
什么是DOI,文献DOI怎么找? 1306655
科研通“疑难数据库(出版商)”最低求助积分说明 627883
版权声明 601567