WGCNA Application to Proteomic and Metabolomic Data Analysis

鉴定(生物学) 代谢组学 计算生物学 蛋白质组学 计算机科学 吞吐量 数据挖掘 数据科学 生物 生物信息学 基因 遗传学 植物 电信 无线
作者
Guangsheng Pei,Lin Chen,W. Zhang
出处
期刊:Methods in Enzymology [Academic Press]
卷期号:: 135-158 被引量:281
标识
DOI:10.1016/bs.mie.2016.09.016
摘要

Progresses in mass spectrometric instrumentation and bioinformatics identification algorithms made over the past decades allow quantitative measurements of relative or absolute protein/metabolite amounts in cells in a high-throughput manner, which has significantly expedited the exploration into functions and dynamics of complex biological systems. However, interpretation of high-throughput data is often restricted by the limited availability of suitable computational methods and enough statistical power. While many computational methodologies have been developed in the past decades to address the issue, it becomes clear that network-focused rather than individual gene/protein-focused strategies would be more appropriate to obtain a complete picture of cellular responses. Recently, an R analytical package named as weighted gene coexpression network analysis (WGCNA) was developed and applied to high-throughput microarray or RNA-seq datasets since it provides a systems-level insights, high sensitivity to low abundance, or small fold changes genes without any information loss. The approach was also recently applied to proteomic and metabolomic data analysis. However, due to the fact that low coverage of the current proteomic and metabolomic analytical technologies, causing the format of datasets are often incomplete, the method needs to be modified so that it can be properly utilized for meaningful biologically interpretation. In this chapter, we provide a detailed introduction of the modified protocol and its tutorials for applying the WGCNA approach in analyzing proteomic and metabolomic datasets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
JAJ发布了新的文献求助10
2秒前
花蕊完成签到 ,获得积分10
2秒前
打打应助juice采纳,获得10
3秒前
量子星尘发布了新的文献求助10
6秒前
7秒前
欢呼的忘幽完成签到,获得积分10
8秒前
仙笛童神完成签到 ,获得积分10
8秒前
完美世界应助坦率的皮带采纳,获得10
9秒前
10秒前
Ava应助复杂的如萱采纳,获得10
10秒前
11秒前
薛定谔的猫完成签到,获得积分10
12秒前
如意2023完成签到 ,获得积分10
12秒前
12秒前
荣荣发布了新的文献求助10
14秒前
科研通AI5应助周周采纳,获得10
14秒前
NanXin完成签到,获得积分10
16秒前
kagaminelen完成签到,获得积分20
16秒前
jejms完成签到,获得积分10
17秒前
幸福大白发布了新的文献求助30
17秒前
量子星尘发布了新的文献求助10
17秒前
17秒前
17秒前
阿言完成签到 ,获得积分10
17秒前
梦河完成签到 ,获得积分10
18秒前
18秒前
bkagyin应助Zeo采纳,获得10
19秒前
20秒前
万刈发布了新的文献求助10
20秒前
坦率的皮带完成签到,获得积分10
20秒前
21秒前
领导范儿应助kagaminelen采纳,获得10
21秒前
ehinqz完成签到 ,获得积分10
21秒前
22秒前
酷波er应助Oay采纳,获得10
22秒前
23秒前
刘哈哈完成签到 ,获得积分10
23秒前
ding应助科研通管家采纳,获得10
23秒前
23秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
Statistical Methods for the Social Sciences, Global Edition, 6th edition 600
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
The Insulin Resistance Epidemic: Uncovering the Root Cause of Chronic Disease  500
Walter Gilbert: Selected Works 500
An Annotated Checklist of Dinosaur Species by Continent 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3662487
求助须知:如何正确求助?哪些是违规求助? 3223261
关于积分的说明 9750825
捐赠科研通 2933130
什么是DOI,文献DOI怎么找? 1605938
邀请新用户注册赠送积分活动 758208
科研通“疑难数据库(出版商)”最低求助积分说明 734743