A regional-scale hyperspectral prediction model of soil organic carbon considering geomorphic features

环境科学 土壤科学 土壤水分 数字土壤制图 遥感 比例(比率) 土壤有机质 植被(病理学) 总有机碳
作者
Yilin Bao,Susan L. Ustin,Xiangtian Meng,Xinle Zhang,Haixiang Guan,Beisong Qi,Huanjun Liu
出处
期刊:Geoderma [Elsevier]
卷期号:403: 115263- 被引量:3
标识
DOI:10.1016/j.geoderma.2021.115263
摘要

Abstract The prediction of soil organic carbon (SOC) from hyperspectral data often lacks geographic and environmental information related to soil genesis, which would improve the accuracy of the predicted SOC. The main purpose of this study was to improve the accuracy of SOC prediction and the mapping of SOC spatial distributions. We employed satellite hyperspectral image (HSI) data combined with ancillary variables (spectral indexes (SIs), terrain attributes (TAs) and spectral texture features (TFs)) by first stratifying the soil at the great group level. The central part of the Songnen Plain in Northeast China was selected as a region for a case study, because the region attracts considerable research interest as major grain production area in China. In different prediction models, recursive feature elimination (RFE) was applied to optimize input variables to reflect the soil-landscape relationships of different soil classes. The results showed that when the soil stratification strategy and ancillary variables were comprehensively considered, the accuracy of the model was significantly improved (with a coefficient of determination (R2) of 0.76, root mean square error (RMSE) of 3.16 g kg−1, and ratio of performance to interquartile distance (RPIQ) of 2.28). The introduction of SIs, TAs and TFs improved the R2 values by 6.15%, 6.15%, and 13.85%, respectively, compared to those achieved with the original reflectance (OR) bands alone. Moreover, the introduction of ancillary variables improved the accuracies of the SOC models, yielding R2 values of Phaeozems, Chernozems, Arenosols and Cambisols of 0.79, 0.53, 0.76, and 0.81, respectively. Compared with the prediction model, which is based on only the OR, the proposed model can better explain SOC spatial variations. The performance comparison highlights the advantage of the considering geomorphic features when utilized for SOC prediction in regional-scale; this model covers the elimination and expression of optimal ancillary variables for different soil classes, which are closely related to the formation of various soil types and the geomorphic evolution of the region. The SOC map that we obtained shows detailed soil information and effectively expresses the soil factors associated with the environment. The map can support planners in establishing efficient SOC monitoring methods and assessments and prioritizing inputs for future exploitation and research.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
WWW完成签到,获得积分10
刚刚
Ava应助雪白的采白采纳,获得10
刚刚
1秒前
2秒前
Owen应助xiaotudou95采纳,获得10
2秒前
zsh发布了新的文献求助10
2秒前
57完成签到,获得积分10
2秒前
佩奇完成签到,获得积分10
3秒前
Yang发布了新的文献求助10
4秒前
赘婿应助喵喵采纳,获得10
4秒前
123发布了新的文献求助10
4秒前
橘子树完成签到,获得积分10
4秒前
5秒前
金金发布了新的文献求助10
5秒前
动次打次发布了新的文献求助30
5秒前
贝儿完成签到 ,获得积分10
6秒前
6秒前
HHHHH发布了新的文献求助10
6秒前
6秒前
7秒前
朱朱发布了新的文献求助20
7秒前
壮观醉柳发布了新的文献求助10
7秒前
7秒前
7秒前
Tracy麦子发布了新的文献求助10
7秒前
8秒前
搜集达人应助sobremasa采纳,获得10
8秒前
9秒前
华仔应助科研通管家采纳,获得10
9秒前
天亮polar完成签到,获得积分10
9秒前
贰鸟应助科研通管家采纳,获得10
9秒前
无花果应助科研通管家采纳,获得10
9秒前
大个应助科研通管家采纳,获得10
9秒前
星辰大海应助科研通管家采纳,获得10
9秒前
vvvvyl应助科研通管家采纳,获得10
9秒前
黛宝完成签到,获得积分10
9秒前
vvvvyl应助科研通管家采纳,获得10
9秒前
小马甲应助科研通管家采纳,获得10
9秒前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Covalent Organic Frameworks 1000
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Theory of Block Polymer Self-Assembly 750
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3481399
求助须知:如何正确求助?哪些是违规求助? 3071505
关于积分的说明 9122297
捐赠科研通 2763255
什么是DOI,文献DOI怎么找? 1516352
邀请新用户注册赠送积分活动 701541
科研通“疑难数据库(出版商)”最低求助积分说明 700339