亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A regional-scale hyperspectral prediction model of soil organic carbon considering geomorphic features

环境科学 土壤科学 土壤水分 数字土壤制图 遥感 比例(比率) 土壤有机质 植被(病理学) 总有机碳
作者
Yilin Bao,Susan L. Ustin,Xiangtian Meng,Xinle Zhang,Haixiang Guan,Beisong Qi,Huanjun Liu
出处
期刊:Geoderma [Elsevier]
卷期号:403: 115263- 被引量:3
标识
DOI:10.1016/j.geoderma.2021.115263
摘要

Abstract The prediction of soil organic carbon (SOC) from hyperspectral data often lacks geographic and environmental information related to soil genesis, which would improve the accuracy of the predicted SOC. The main purpose of this study was to improve the accuracy of SOC prediction and the mapping of SOC spatial distributions. We employed satellite hyperspectral image (HSI) data combined with ancillary variables (spectral indexes (SIs), terrain attributes (TAs) and spectral texture features (TFs)) by first stratifying the soil at the great group level. The central part of the Songnen Plain in Northeast China was selected as a region for a case study, because the region attracts considerable research interest as major grain production area in China. In different prediction models, recursive feature elimination (RFE) was applied to optimize input variables to reflect the soil-landscape relationships of different soil classes. The results showed that when the soil stratification strategy and ancillary variables were comprehensively considered, the accuracy of the model was significantly improved (with a coefficient of determination (R2) of 0.76, root mean square error (RMSE) of 3.16 g kg−1, and ratio of performance to interquartile distance (RPIQ) of 2.28). The introduction of SIs, TAs and TFs improved the R2 values by 6.15%, 6.15%, and 13.85%, respectively, compared to those achieved with the original reflectance (OR) bands alone. Moreover, the introduction of ancillary variables improved the accuracies of the SOC models, yielding R2 values of Phaeozems, Chernozems, Arenosols and Cambisols of 0.79, 0.53, 0.76, and 0.81, respectively. Compared with the prediction model, which is based on only the OR, the proposed model can better explain SOC spatial variations. The performance comparison highlights the advantage of the considering geomorphic features when utilized for SOC prediction in regional-scale; this model covers the elimination and expression of optimal ancillary variables for different soil classes, which are closely related to the formation of various soil types and the geomorphic evolution of the region. The SOC map that we obtained shows detailed soil information and effectively expresses the soil factors associated with the environment. The map can support planners in establishing efficient SOC monitoring methods and assessments and prioritizing inputs for future exploitation and research.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
null应助科研通管家采纳,获得10
刚刚
null应助科研通管家采纳,获得10
刚刚
null应助科研通管家采纳,获得10
刚刚
null应助科研通管家采纳,获得10
刚刚
null应助科研通管家采纳,获得10
刚刚
刚刚
null应助科研通管家采纳,获得10
1秒前
null应助科研通管家采纳,获得10
1秒前
磨刀霍霍阿里嘎多完成签到 ,获得积分10
15秒前
要减肥的春天完成签到,获得积分10
19秒前
共享精神应助冷酷的鹏涛采纳,获得10
25秒前
uss完成签到,获得积分10
27秒前
阿布应助仁爱的念文采纳,获得10
36秒前
从来都不会放弃zr完成签到,获得积分10
44秒前
直率的雪巧完成签到,获得积分10
56秒前
科研通AI6应助inRe采纳,获得10
1分钟前
研友_VZG7GZ应助xuzb采纳,获得10
1分钟前
1分钟前
1分钟前
斯文败类应助SiboN采纳,获得10
1分钟前
CodeCraft应助科研通管家采纳,获得10
1分钟前
思源应助科研通管家采纳,获得10
1分钟前
1分钟前
2分钟前
2分钟前
冷酷的鹏涛完成签到,获得积分10
2分钟前
2分钟前
墨薄凉完成签到 ,获得积分10
2分钟前
轻松一曲应助inRe采纳,获得10
2分钟前
hlq完成签到 ,获得积分10
2分钟前
xuzb完成签到,获得积分10
3分钟前
3分钟前
龙龙冲发布了新的文献求助20
3分钟前
美满尔蓝完成签到,获得积分10
3分钟前
纪言七许完成签到 ,获得积分10
3分钟前
小马甲应助龙龙冲采纳,获得10
3分钟前
英勇的醉蓝完成签到,获得积分20
3分钟前
qinglongtsmc发布了新的文献求助10
3分钟前
ding应助英勇的醉蓝采纳,获得10
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
花の香りの秘密―遺伝子情報から機能性まで 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Chemistry and Biochemistry: Research Progress Vol. 7 430
Bone Marrow Immunohistochemistry 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5628172
求助须知:如何正确求助?哪些是违规求助? 4715898
关于积分的说明 14963806
捐赠科研通 4785879
什么是DOI,文献DOI怎么找? 2555413
邀请新用户注册赠送积分活动 1516720
关于科研通互助平台的介绍 1477252