A regional-scale hyperspectral prediction model of soil organic carbon considering geomorphic features

环境科学 土壤科学 土壤水分 数字土壤制图 遥感 比例(比率) 土壤有机质 植被(病理学) 总有机碳
作者
Yilin Bao,Susan L. Ustin,Xiangtian Meng,Xinle Zhang,Haixiang Guan,Beisong Qi,Huanjun Liu
出处
期刊:Geoderma [Elsevier BV]
卷期号:403: 115263- 被引量:3
标识
DOI:10.1016/j.geoderma.2021.115263
摘要

Abstract The prediction of soil organic carbon (SOC) from hyperspectral data often lacks geographic and environmental information related to soil genesis, which would improve the accuracy of the predicted SOC. The main purpose of this study was to improve the accuracy of SOC prediction and the mapping of SOC spatial distributions. We employed satellite hyperspectral image (HSI) data combined with ancillary variables (spectral indexes (SIs), terrain attributes (TAs) and spectral texture features (TFs)) by first stratifying the soil at the great group level. The central part of the Songnen Plain in Northeast China was selected as a region for a case study, because the region attracts considerable research interest as major grain production area in China. In different prediction models, recursive feature elimination (RFE) was applied to optimize input variables to reflect the soil-landscape relationships of different soil classes. The results showed that when the soil stratification strategy and ancillary variables were comprehensively considered, the accuracy of the model was significantly improved (with a coefficient of determination (R2) of 0.76, root mean square error (RMSE) of 3.16 g kg−1, and ratio of performance to interquartile distance (RPIQ) of 2.28). The introduction of SIs, TAs and TFs improved the R2 values by 6.15%, 6.15%, and 13.85%, respectively, compared to those achieved with the original reflectance (OR) bands alone. Moreover, the introduction of ancillary variables improved the accuracies of the SOC models, yielding R2 values of Phaeozems, Chernozems, Arenosols and Cambisols of 0.79, 0.53, 0.76, and 0.81, respectively. Compared with the prediction model, which is based on only the OR, the proposed model can better explain SOC spatial variations. The performance comparison highlights the advantage of the considering geomorphic features when utilized for SOC prediction in regional-scale; this model covers the elimination and expression of optimal ancillary variables for different soil classes, which are closely related to the formation of various soil types and the geomorphic evolution of the region. The SOC map that we obtained shows detailed soil information and effectively expresses the soil factors associated with the environment. The map can support planners in establishing efficient SOC monitoring methods and assessments and prioritizing inputs for future exploitation and research.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ding应助YouD采纳,获得10
刚刚
刚刚
1秒前
微笑寻凝发布了新的文献求助10
2秒前
ding应助biubiu26采纳,获得10
2秒前
陈酒关注了科研通微信公众号
4秒前
rotator发布了新的文献求助10
6秒前
7秒前
7秒前
ldj6670完成签到,获得积分10
8秒前
9秒前
阿可阿可完成签到,获得积分10
9秒前
ikun在此完成签到,获得积分10
9秒前
勤劳的老九应助JW采纳,获得10
10秒前
10秒前
10秒前
hhh发布了新的文献求助10
11秒前
11秒前
丫丫完成签到,获得积分10
11秒前
yx_cheng应助zzt采纳,获得10
12秒前
13秒前
13秒前
LTT完成签到,获得积分10
13秒前
biubiu26发布了新的文献求助10
14秒前
元元完成签到,获得积分10
14秒前
15秒前
WWWUBING发布了新的文献求助10
16秒前
在水一方应助Enuo采纳,获得10
16秒前
箫笛发布了新的文献求助10
16秒前
16秒前
16秒前
17秒前
陈兵关注了科研通微信公众号
17秒前
CipherSage应助moumou采纳,获得10
18秒前
11发布了新的文献求助10
18秒前
Slhy完成签到 ,获得积分10
18秒前
粉红小企鹅完成签到,获得积分10
19秒前
shensiang发布了新的文献求助30
20秒前
能干的茗发布了新的文献求助10
20秒前
qyxqyx发布了新的文献求助10
20秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3967409
求助须知:如何正确求助?哪些是违规求助? 3512686
关于积分的说明 11164677
捐赠科研通 3247651
什么是DOI,文献DOI怎么找? 1793964
邀请新用户注册赠送积分活动 874785
科研通“疑难数据库(出版商)”最低求助积分说明 804498