We study estimation of causal effects in staggered-rollout designs—that is, settings where there is staggered treatment adoption and the timing of treatment is as good as randomly assigned. We derive the most efficient estimator in a class of estimators that nests several popular generalized difference-in-differences methods. A feasible plug-in version of the efficient estimator is asymptotically unbiased, with efficiency (weakly) dominating that of existing approaches. We provide both t-based and permutation-test-based methods for inference. In an application to a training program for police officers, confidence intervals for the proposed estimator are as much as eight times shorter than those for existing approaches.