AlphaDesign: A de novo protein design framework based on AlphaFold

蛋白质设计 计算生物学 蛋白质结构 蛋白质折叠 分子动力学 折叠(DSP实现) 蛋白质组 蛋白质工程 结构生物信息学 蛋白质结构预测 生物系统 计算机科学 化学 生物 生物信息学 计算化学 生物化学 工程类 电气工程
作者
Michael Jendrusch,Jan O. Korbel,S. Kashif Sadiq
标识
DOI:10.1101/2021.10.11.463937
摘要

De novo protein design is a longstanding fundamental goal of synthetic biology, but has been hindered by the difficulty in reliable prediction of accurate high-resolution protein structures from sequence. Recent advances in the accuracy of protein structure prediction methods, such as AlphaFold (AF), have facilitated proteome scale structural predictions of monomeric proteins. Here we develop AlphaDesign, a computational framework for de novo protein design that embeds AF as an oracle within an optimisable design process. Our framework enables rapid prediction of completely novel protein monomers starting from random sequences. These are shown to adopt a diverse array of folds within the known protein space. A recent and unexpected utility of AF to predict the structure of protein complexes, further allows our framework to design higher-order complexes. Subsequently a range of predictions are made for monomers, homodimers, heterodimers as well as higher-order homo-oligomers - trimers to hexamers. Our analyses also show potential for designing proteins that bind to a pre-specified target protein. Structural integrity of predicted structures is validated and confirmed by standard ab initio folding and structural analysis methods as well as more extensively by performing rigorous all-atom molecular dynamics simulations and analysing the corresponding structural flexibility, intramonomer and interfacial amino-acid contacts. These analyses demonstrate widespread maintenance of structural integrity and suggests that our framework allows for fairly accurate protein design. Strikingly, our approach also reveals the capacity of AF to predict proteins that switch conformation upon complex formation, such as involving switches from α -helices to β -sheets during amyloid filament formation. Correspondingly, when integrated into our design framework, our approach reveals de novo design of a subset of proteins that switch conformation between monomeric and oligomeric state.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
zzz发布了新的文献求助10
刚刚
kingwill应助江南烟雨如笙采纳,获得20
1秒前
1秒前
zrk发布了新的文献求助10
1秒前
小毕可乐完成签到,获得积分10
2秒前
zc19891130完成签到,获得积分10
2秒前
烟花应助晗仔采纳,获得10
2秒前
2秒前
3秒前
3秒前
3秒前
4秒前
小蘑菇应助zhui采纳,获得10
4秒前
4秒前
虚心的冷雪完成签到,获得积分20
5秒前
科研小白发布了新的文献求助10
5秒前
苹果萧发布了新的文献求助10
6秒前
zhihan发布了新的文献求助10
7秒前
Hao发布了新的文献求助10
7秒前
7秒前
Orange应助贾不可采纳,获得10
7秒前
李健的小迷弟应助贾不可采纳,获得10
7秒前
FashionBoy应助贾不可采纳,获得10
7秒前
奋斗的夜山完成签到 ,获得积分10
7秒前
yana发布了新的文献求助20
7秒前
yijiubingshi完成签到,获得积分10
8秒前
苏南完成签到 ,获得积分10
8秒前
冰激凌UP发布了新的文献求助10
8秒前
SCI发布了新的文献求助10
8秒前
CD发布了新的文献求助10
8秒前
9秒前
yan123发布了新的文献求助10
10秒前
10秒前
充电宝应助yyj采纳,获得10
10秒前
马静雨发布了新的文献求助10
10秒前
云游归尘发布了新的文献求助10
11秒前
12秒前
111发布了新的文献求助10
12秒前
寰宇完成签到,获得积分10
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527849
求助须知:如何正确求助?哪些是违规求助? 3107938
关于积分的说明 9287239
捐赠科研通 2805706
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716893
科研通“疑难数据库(出版商)”最低求助积分说明 709794