AlphaDesign: A de novo protein design framework based on AlphaFold

蛋白质设计 计算生物学 蛋白质结构 蛋白质折叠 分子动力学 折叠(DSP实现) 蛋白质组 蛋白质工程 结构生物信息学 蛋白质结构预测 生物系统 计算机科学 化学 生物 生物信息学 计算化学 生物化学 工程类 电气工程
作者
Michael Jendrusch,Jan O. Korbel,S. Kashif Sadiq
标识
DOI:10.1101/2021.10.11.463937
摘要

De novo protein design is a longstanding fundamental goal of synthetic biology, but has been hindered by the difficulty in reliable prediction of accurate high-resolution protein structures from sequence. Recent advances in the accuracy of protein structure prediction methods, such as AlphaFold (AF), have facilitated proteome scale structural predictions of monomeric proteins. Here we develop AlphaDesign, a computational framework for de novo protein design that embeds AF as an oracle within an optimisable design process. Our framework enables rapid prediction of completely novel protein monomers starting from random sequences. These are shown to adopt a diverse array of folds within the known protein space. A recent and unexpected utility of AF to predict the structure of protein complexes, further allows our framework to design higher-order complexes. Subsequently a range of predictions are made for monomers, homodimers, heterodimers as well as higher-order homo-oligomers - trimers to hexamers. Our analyses also show potential for designing proteins that bind to a pre-specified target protein. Structural integrity of predicted structures is validated and confirmed by standard ab initio folding and structural analysis methods as well as more extensively by performing rigorous all-atom molecular dynamics simulations and analysing the corresponding structural flexibility, intramonomer and interfacial amino-acid contacts. These analyses demonstrate widespread maintenance of structural integrity and suggests that our framework allows for fairly accurate protein design. Strikingly, our approach also reveals the capacity of AF to predict proteins that switch conformation upon complex formation, such as involving switches from α -helices to β -sheets during amyloid filament formation. Correspondingly, when integrated into our design framework, our approach reveals de novo design of a subset of proteins that switch conformation between monomeric and oligomeric state.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lyl1995完成签到,获得积分10
刚刚
炙热行云完成签到,获得积分10
1秒前
无私的凌萱完成签到,获得积分10
2秒前
zhnf1179完成签到,获得积分10
2秒前
朱朱完成签到 ,获得积分10
2秒前
一只暮蝉23完成签到,获得积分10
2秒前
若山完成签到,获得积分10
3秒前
3秒前
CrsCrsCrs完成签到,获得积分10
3秒前
mxm完成签到,获得积分10
3秒前
Avatar完成签到,获得积分10
3秒前
量子星尘发布了新的文献求助10
3秒前
Criminology34应助平常的如风采纳,获得10
3秒前
somajason完成签到,获得积分10
3秒前
keyanlv发布了新的文献求助10
4秒前
风中外绣发布了新的文献求助10
4秒前
浮游应助AoAoo采纳,获得10
4秒前
5秒前
Zero完成签到,获得积分0
5秒前
淡然的奎完成签到,获得积分10
5秒前
Lucas应助cc采纳,获得10
5秒前
南北完成签到,获得积分0
6秒前
PDD完成签到,获得积分20
6秒前
核桃完成签到,获得积分10
6秒前
ayawbb完成签到,获得积分10
6秒前
小杨老师完成签到,获得积分10
7秒前
7秒前
天天快乐应助gwgplmz采纳,获得10
7秒前
今后应助lxl采纳,获得10
7秒前
拾柒完成签到,获得积分10
8秒前
wang完成签到 ,获得积分10
8秒前
Tammy完成签到,获得积分10
8秒前
8秒前
AHA完成签到,获得积分10
8秒前
9秒前
9秒前
爆米花应助阿玺采纳,获得10
9秒前
周星星完成签到,获得积分10
9秒前
南风喜欢完成签到,获得积分10
10秒前
JJW完成签到,获得积分10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5664939
求助须知:如何正确求助?哪些是违规求助? 4873377
关于积分的说明 15110105
捐赠科研通 4823973
什么是DOI,文献DOI怎么找? 2582614
邀请新用户注册赠送积分活动 1536518
关于科研通互助平台的介绍 1495130