插层(化学)
降级(电信)
电化学
材料科学
阴极
钠离子电池
钠
扩散
普鲁士蓝
离子交换
结构稳定性
电池(电)
镍
化学工程
化学
离子
电极
无机化学
冶金
有机化学
结构工程
热力学
物理化学
功率(物理)
法拉第效率
工程类
物理
电信
计算机科学
作者
Jianguo Sun,Hualin Ye,Jin An Sam Oh,Yao Sun,Anna Plewa,Yumei Wang,Tian Wu,Kaiyang Zeng,Lü Li
出处
期刊:Nano Research
[Springer Nature]
日期:2021-10-01
卷期号:15 (3): 2123-2129
被引量:14
标识
DOI:10.1007/s12274-021-3844-7
摘要
Generation of large strains upon Na+ intercalation is one of the prime concerns of the mechanical degradation of Prussian blue (PB) and its analogs. Structural construction from the atomic level is imperative to maintain structural stability and ameliorate the long-term stability of PB. Herein, an inter nickel hexacyanoferrate (NNiFCN) is successfully introduced at the out layer of iron hexacyanoferrate (NFFCN) through ion exchange to improve structural stability through compressive stress locking by forming NNiFCN shell. Furthermore, the kinetics of sodium ion diffusion is enhanced through the built-in electric pathway. The electrochemical performance is therefore significantly improved with a remarkable long-term cycling stability over 3,000 cycles at 500 mA·g−1 in the full sodium-ion batteries (SIBs) with a maximum energy density of 91.94 Wh·g−1, indicating that the core-shell structured NNiFCN/NFFCN could be the low-cost and high-performance cathode for full SIBs in large-scale EES applications.
科研通智能强力驱动
Strongly Powered by AbleSci AI