光致发光
材料科学
拉曼光谱
单层
化学气相沉积
激子
半导体
光电子学
分子物理学
基质(水族馆)
光学
纳米技术
凝聚态物理
化学
物理
海洋学
地质学
作者
Xi Yang,Zhihong Zhu,Fang Luo,Guang Wang,Gang Peng,Mengjian Zhu,Shiqiao Qin
标识
DOI:10.1021/acsami.1c13096
摘要
Two-dimensional semiconductors exhibit strong light emission under optical or electrical pumping due to quantum confinement and large exciton binding energies. The regulation of the light emission shows great application potential in next-generation optoelectronic devices. Herein, by the physical vapor deposition strategy, we synthesize monolayer hexagonal-shaped WS2, and its photoluminescence intensity mapping show three-fold symmetric patterns with alternating bright and dark regions. Regardless of the length of the edges, all domains with S-terminated edges show lower photoluminescence intensity, while all regions with W-terminated edges exhibit higher photoluminescence intensity. The photoluminescence segmentation mechanism is studied in detail by employing Raman spectroscopy, atomic force microscopy, high-resolution transmission electron microscopy, and Kelvin probe force microscopy, and it is found to originate from different strain distributions in the S-terminated region and the W-terminated region. The optical band gap determined by the photoluminescence in the dark region is ∼2 meV lower than that in the bright region, implying that more strain is stored in the S-terminated region than in the W-terminated region. The photoluminescence segmentation vanishes in transferred hexagonal-shaped WS2 from the initial substrate to a fresh silicon substrate, further confirming the physical mechanism. Our results provide guidance for tuning the optical properties of two-dimensional semiconductors by controllable strain engineering.
科研通智能强力驱动
Strongly Powered by AbleSci AI