化学
分子动力学
动力学(音乐)
超短脉冲
光谱学
丙烯酰胺
红外光谱学
化学物理
聚合物
自愈水凝胶
化学工程
单体
高分子化学
计算化学
有机化学
光学
物理
工程类
量子力学
激光器
声学
作者
Sean A. Roget,Zeke A. Piskulich,Ward H. Thompson,M. D. Fayer
摘要
The dynamics and structure of water in polyacrylamide hydrogels (PAAm-HG), polyacrylamide, and acrylamide solutions are investigated using ultrafast infrared experiments on the OD stretch of dilute HOD/H2O and molecular dynamics simulations. The amide moiety of the monomer/polymers interacts strongly with water through hydrogen bonding (H-bonding). The FT-IR spectra of the three systems indicate that the range of H-bond strengths is relatively unchanged from bulk water. Vibrational population relaxation measurements show that the amide/water H-bonds are somewhat weaker but fall within the range of water/water H-bond strengths. A previous study of water dynamics in PAAm-HG suggested that the slowing observed was due to increasing confinement with concentration. Here, for the same concentrations of the amide moiety, the experimental results demonstrate that the reorientational dynamics (infrared pump-probe experiments) and structural dynamics (two-dimensional infrared spectroscopy) are identical in the three acrylamide systems studied. Molecular dynamics simulations of the water orientational relaxation in aqueous solutions of the acrylamide monomer, trimer, and pentamer are in good agreement with the experimental results and are essentially chain length independent. The simulations show that there is a slower, low-amplitude (<7%) decay component not accessible by the experiments. The simulations examine the dynamics and structure of water H-bonded to acrylamide, in the first solvent shell, and beyond for acrylamide monomers and short chains. The experiments and simulations show that the slowing of water dynamics in PAAm-HG is not caused by confinement in the polymer network but rather by interactions with individual acrylamide moieties.
科研通智能强力驱动
Strongly Powered by AbleSci AI