A bearing fault diagnosis model based on CNN with wide convolution kernels

计算机科学 卷积神经网络 人工智能 特征提取 预处理器 领域(数学) 模式识别(心理学) 时域 计算智能 卷积(计算机科学) 人工神经网络 断层(地质) 计算机视觉 数学 地震学 纯数学 地质学
作者
Xudong Song,Yuyang Cong,Yifan Song,Yilin Chen,Liang Pan
出处
期刊:Journal of Ambient Intelligence and Humanized Computing [Springer Science+Business Media]
卷期号:13 (8): 4041-4056 被引量:98
标识
DOI:10.1007/s12652-021-03177-x
摘要

Intelligent fault diagnosis of bearings is an essential issue in the field of health management and the prediction of rotating machinery systems. The traditional bearing intelligent diagnosis algorithms based on the combination of feature extraction and classification for signal processing require high expert experience, which are time-consuming and lack universality. Compared with traditional methods, the convolutional neural network(CNN) can extract features automatically from the original vibration time-domain signal without any preprocessing. The accuracy of intelligent fault diagnosis can be improved by utilizing the multi-layer nonlinear mapping capability of deep convolutional neural networks. In order to realize the intelligent diagnosis and improve the recognition rate, this paper adopts the strategy of widening convolution kernels to obtain a larger receptive field and proposes a network design process pattern based on this idea, in addition, obtains the convolutional neural network with wide convolution kernels (WKCNN) model through experiments. Based on the time-domain vibration signal, this paper generates more input data through expansion and adopts the wide kernels of the first two convolutional layers to quickly extract features to improve efficiency. The smaller convolution kernels are used for multi-layer nonlinear mapping to deepen the network and improve detection accuracy. The results show that WKCNN performs well in accuracy, anti-noise, and timeliness compared with other diagnostic methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小黄发布了新的文献求助20
刚刚
hh发布了新的文献求助10
2秒前
3秒前
Lucian完成签到,获得积分10
4秒前
4秒前
外向代柔发布了新的文献求助10
4秒前
唧唧完成签到,获得积分20
5秒前
Shawn完成签到,获得积分10
7秒前
跳跃桃子完成签到 ,获得积分10
7秒前
UsihaGuwalgiya完成签到,获得积分10
7秒前
7秒前
希望天下0贩的0应助allen采纳,获得10
8秒前
SYLH应助冷静的奇迹采纳,获得10
8秒前
谦玉完成签到,获得积分10
9秒前
陈博文发布了新的文献求助10
9秒前
舒心的初兰完成签到,获得积分10
10秒前
安详的自中完成签到,获得积分10
11秒前
会撒娇的含巧完成签到,获得积分10
12秒前
111完成签到,获得积分10
12秒前
12秒前
聪明宛菡完成签到,获得积分10
12秒前
唧唧发布了新的文献求助10
13秒前
星辰大海应助无私的睫毛采纳,获得10
13秒前
求是完成签到,获得积分10
13秒前
14秒前
就不好用发布了新的文献求助10
14秒前
激情的纲发布了新的文献求助10
14秒前
15秒前
16秒前
1111完成签到,获得积分10
16秒前
17秒前
李喜喜完成签到,获得积分10
18秒前
18秒前
18秒前
19秒前
20秒前
Lucian发布了新的文献求助10
20秒前
20秒前
Fengmin Zhang发布了新的文献求助10
21秒前
xx发布了新的文献求助10
21秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Comparison of adverse drug reactions of heparin and its derivates in the European Economic Area based on data from EudraVigilance between 2017 and 2021 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3952732
求助须知:如何正确求助?哪些是违规求助? 3498228
关于积分的说明 11090865
捐赠科研通 3228782
什么是DOI,文献DOI怎么找? 1785114
邀请新用户注册赠送积分活动 869105
科研通“疑难数据库(出版商)”最低求助积分说明 801350