已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

A bearing fault diagnosis model based on CNN with wide convolution kernels

计算机科学 卷积神经网络 人工智能 特征提取 预处理器 领域(数学) 模式识别(心理学) 时域 计算智能 卷积(计算机科学) 人工神经网络 断层(地质) 计算机视觉 数学 地震学 纯数学 地质学
作者
Xudong Song,Yuyang Cong,Yifan Song,Yilin Chen,Liang Pan
出处
期刊:Journal of Ambient Intelligence and Humanized Computing [Springer Nature]
卷期号:13 (8): 4041-4056 被引量:120
标识
DOI:10.1007/s12652-021-03177-x
摘要

Intelligent fault diagnosis of bearings is an essential issue in the field of health management and the prediction of rotating machinery systems. The traditional bearing intelligent diagnosis algorithms based on the combination of feature extraction and classification for signal processing require high expert experience, which are time-consuming and lack universality. Compared with traditional methods, the convolutional neural network(CNN) can extract features automatically from the original vibration time-domain signal without any preprocessing. The accuracy of intelligent fault diagnosis can be improved by utilizing the multi-layer nonlinear mapping capability of deep convolutional neural networks. In order to realize the intelligent diagnosis and improve the recognition rate, this paper adopts the strategy of widening convolution kernels to obtain a larger receptive field and proposes a network design process pattern based on this idea, in addition, obtains the convolutional neural network with wide convolution kernels (WKCNN) model through experiments. Based on the time-domain vibration signal, this paper generates more input data through expansion and adopts the wide kernels of the first two convolutional layers to quickly extract features to improve efficiency. The smaller convolution kernels are used for multi-layer nonlinear mapping to deepen the network and improve detection accuracy. The results show that WKCNN performs well in accuracy, anti-noise, and timeliness compared with other diagnostic methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xiang完成签到 ,获得积分10
刚刚
一介书生发布了新的文献求助10
1秒前
北风语完成签到,获得积分10
1秒前
2秒前
2秒前
3秒前
4秒前
4秒前
Hwchaodoctor完成签到,获得积分10
4秒前
默默含卉发布了新的文献求助30
5秒前
5秒前
jiejie321发布了新的文献求助10
6秒前
7秒前
852应助wuji采纳,获得10
7秒前
科研新兵完成签到 ,获得积分10
7秒前
古日方原发布了新的文献求助10
8秒前
毛竹完成签到,获得积分10
10秒前
10秒前
11秒前
十七完成签到,获得积分10
11秒前
Yanning完成签到,获得积分10
12秒前
ccm应助科研通管家采纳,获得10
12秒前
12秒前
斯文败类应助科研通管家采纳,获得10
12秒前
MchemG应助科研通管家采纳,获得10
12秒前
隐形曼青应助科研通管家采纳,获得10
12秒前
浮游应助科研通管家采纳,获得10
13秒前
科研新兵关注了科研通微信公众号
13秒前
斯文败类应助研友LwklKL采纳,获得50
13秒前
毛竹发布了新的文献求助10
14秒前
牛牛牛完成签到,获得积分10
15秒前
15秒前
JamesPei应助默默含卉采纳,获得30
15秒前
bkagyin应助心信鑫采纳,获得30
15秒前
17秒前
19秒前
量子星尘发布了新的文献求助10
21秒前
桐桐应助端庄的乐枫采纳,获得10
21秒前
ZHI发布了新的文献求助10
22秒前
动听的雪卉完成签到,获得积分10
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Washback Research in Language Assessment:Fundamentals and Contexts 400
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5469657
求助须知:如何正确求助?哪些是违规求助? 4572650
关于积分的说明 14336604
捐赠科研通 4499505
什么是DOI,文献DOI怎么找? 2465100
邀请新用户注册赠送积分活动 1453653
关于科研通互助平台的介绍 1428141