可转让性
折叠(DSP实现)
激发态
谱线
密度泛函理论
从头算
吸收光谱法
紫外线
光谱学
化学
吸收(声学)
从头算量子化学方法
化学物理
协议(科学)
计算化学
计算机科学
分子物理学
物理
机器学习
原子物理学
分子
光学
量子力学
医学
有机化学
病理
罗伊特
替代医学
工程类
电气工程
作者
Jinxiao Zhang,Sheng Ye,Kai Zhong,Yaolong Zhang,Yuanyuan Chong,Luyuan Zhao,Huiting Zhou,Sibei Guo,Guozhen Zhang,Bin Jiang,Shaul Mukamel,Jun Jiang
标识
DOI:10.1021/acs.jpcb.1c03296
摘要
Ultraviolet (UV) absorption spectra are commonly used for characterizing the global structure of proteins. However, the theoretical interpretation of UV spectra is hindered by the large number of required expensive ab initio calculations of excited states spanning a huge conformation space. We present a machine-learning (ML) protocol for far-UV (FUV) spectra of proteins, which can predict FUV spectra of proteins with comparable accuracy to density functional theory (DFT) calculations but with 3–4 orders of magnitude reduced computational cost. It further shows excellent predictive power and transferability that can be used to probe structural mutations and protein folding pathways.
科研通智能强力驱动
Strongly Powered by AbleSci AI