Data-driven based machine learning models for predicting the deliverability of underground natural gas storage in salt caverns

支持向量机 机器学习 人工神经网络 人工智能 预测建模 天然气储存 计算机科学 随机森林 领域(数学) 工程类 数据挖掘 天然气 数学 废物管理 纯数学
作者
Aliyuda Ali
出处
期刊:Energy [Elsevier BV]
卷期号:229: 120648-120648 被引量:38
标识
DOI:10.1016/j.energy.2021.120648
摘要

This paper proposes a collection of novel deliverability prediction models for underground natural gas storage (UNGS) in salt caverns based on machine learning algorithms. Considering that the natural gas supply chain is characterized by imbalances between demand and supply on a timely basis, effective and fast models for predicting the deliverability of UNGS would not only be a valuable tool to various stakeholders but also, of great benefit in competitive natural gas marketplace. In this paper, a first step in applying machine learning algorithms to predict the deliverability of UNGS in salt caverns is proposed. To achieve this, the capability of three machine learning algorithms namely, artificial neural network (ANN), support vector machine (SVM), and Random Forest (RF) are examined. The predictive capabilities of these methods were investigated using different monthly field storage data samples for different years with varied data samples of 36 active UNGS in salt caverns in the United States. Experimental results reveal that the machine learning models developed in this study can serve as suitable tools for predicting the deliverability of UNGS in salt caverns with different performances. Overall result shows that RF model exhibits better prediction performance with varied data partitions over ANN and SVM models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
酷炫蛋挞发布了新的文献求助10
刚刚
排骨大王发布了新的文献求助50
刚刚
香蕉觅云应助大意的豌豆采纳,获得10
1秒前
ma发布了新的文献求助10
1秒前
Wang发布了新的文献求助10
1秒前
1秒前
务实的青亦完成签到,获得积分10
2秒前
Hello应助任性的小土豆采纳,获得10
3秒前
李健应助limeOrca采纳,获得10
3秒前
研友_Raven发布了新的文献求助10
5秒前
5秒前
英俊的铭应助付艳采纳,获得10
5秒前
yznfly应助穆尘采纳,获得30
6秒前
ma完成签到,获得积分10
7秒前
任元元完成签到,获得积分10
8秒前
汪汪完成签到,获得积分10
8秒前
8秒前
羊羽完成签到,获得积分10
9秒前
10秒前
乔一乔完成签到,获得积分10
12秒前
12秒前
13秒前
13秒前
俊逸梦蕊发布了新的文献求助50
14秒前
之贻发布了新的文献求助10
14秒前
15秒前
yxy发布了新的文献求助20
15秒前
minnom完成签到 ,获得积分10
15秒前
云朵发布了新的文献求助10
15秒前
20240199120007完成签到,获得积分10
16秒前
壮观的擎发布了新的文献求助10
16秒前
16秒前
王富贵完成签到,获得积分10
17秒前
17秒前
heure完成签到 ,获得积分20
17秒前
风清扬应助xxx采纳,获得10
18秒前
bkagyin应助务实的青亦采纳,获得10
18秒前
Pinankieeeee发布了新的文献求助10
18秒前
鞥枊完成签到,获得积分10
19秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3959633
求助须知:如何正确求助?哪些是违规求助? 3505879
关于积分的说明 11126688
捐赠科研通 3237840
什么是DOI,文献DOI怎么找? 1789380
邀请新用户注册赠送积分活动 871691
科研通“疑难数据库(出版商)”最低求助积分说明 802963