Chaos numbers based a new representation scheme for evolutionary computation: Applications in evolutionary association rule mining

混乱的 代表(政治) 计算机科学 集合(抽象数据类型) 关联规则学习 编码(内存) 混沌(操作系统) 进化算法 方案(数学) 进化计算 数据挖掘 计算 人工智能 算法 数学 政治 数学分析 计算机安全 程序设计语言 法学 政治学
作者
Elif Varol Altay,Bilal Alataş
出处
期刊:Concurrency and Computation: Practice and Experience [Wiley]
卷期号:34 (5) 被引量:4
标识
DOI:10.1002/cpe.6744
摘要

Abstract In some practical situations, new computational methods are required for appropriately representing systems and their variables with inaccuracies, uncertainties, or variability. The chaos numbers seem to efficiently represent a set or range of values with lower and upper bounds for variables. In this article, a new chaos‐enhanced representation scheme that is based on the notion of chaos numbers is proposed for evolutionary optimization methods. As a first application of chaos‐based new encoding type, it is integrated into the novel hybrid intelligent optimization method proposed that is adapted as numerical association rules miner for the first time. The proposed hybrid method can also be used for complex types of search and optimization problems. The method is designed as a multiobjective rule miner that simultaneously handles different conflicting objectives and finds the accurate and comprehensible rules automatically. Based on the chaotic encoding, the proposed method easily and effectively adjusts the intervals of the attributes and automatically mines the rules without any preprocess. The performance of the proposed method was tested in real quantitative data sets and results were compared with the other association rule mining methods. According to the obtained results, the proposed method seems promising with respect to different metrics.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lljken发布了新的文献求助10
刚刚
刚刚
佳AOAOAO发布了新的文献求助10
2秒前
2秒前
科研通AI2S应助ABC采纳,获得10
2秒前
3秒前
xiaoting完成签到,获得积分20
3秒前
cfplhys发布了新的文献求助10
4秒前
歇儿哒哒完成签到,获得积分10
4秒前
研友_VZG7GZ应助lv采纳,获得10
4秒前
hb发布了新的文献求助10
6秒前
6秒前
九头鬼方发布了新的文献求助30
7秒前
科研通AI2S应助风华正茂采纳,获得10
8秒前
zqz发布了新的文献求助10
9秒前
10秒前
SciGPT应助踏雪飞鸿采纳,获得10
10秒前
Liiw完成签到,获得积分10
10秒前
大个应助科研通管家采纳,获得10
12秒前
田様应助科研通管家采纳,获得10
12秒前
科研通AI2S应助科研通管家采纳,获得10
12秒前
科研通AI5应助lljken采纳,获得10
12秒前
共享精神应助科研通管家采纳,获得10
12秒前
CodeCraft应助科研通管家采纳,获得10
12秒前
科研通AI5应助科研通管家采纳,获得50
12秒前
山花浪漫应助科研通管家采纳,获得10
13秒前
研友_VZG7GZ应助科研通管家采纳,获得10
13秒前
传奇3应助科研通管家采纳,获得10
13秒前
深情安青应助科研通管家采纳,获得150
13秒前
田様应助科研通管家采纳,获得10
13秒前
田様应助科研通管家采纳,获得10
13秒前
小蘑菇应助科研通管家采纳,获得10
13秒前
13秒前
13秒前
13秒前
15秒前
16秒前
zho关闭了zho文献求助
17秒前
yy应助susan采纳,获得10
18秒前
liu完成签到,获得积分10
18秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3738291
求助须知:如何正确求助?哪些是违规求助? 3281789
关于积分的说明 10026606
捐赠科研通 2998667
什么是DOI,文献DOI怎么找? 1645317
邀请新用户注册赠送积分活动 782748
科研通“疑难数据库(出版商)”最低求助积分说明 749901