Machine Learning for Advanced Design of Nanocomposite Ultrafiltration Membranes

超滤(肾) 纳滤 纳米复合材料 结垢 聚合膜 材料科学 微滤 工艺工程 化学工程 计算机科学 聚合物 色谱法 复合材料 工程类 化学 生物化学
作者
Masoud Fetanat,Mohammadali Keshtiara,Ze‐Xian Low,Ramazan Keyikoğlu,Alireza Khataee,Yasin Orooji,Vicki Chen,Leslie Gregory,Amir Razmjou
出处
期刊:Industrial & Engineering Chemistry Research [American Chemical Society]
卷期号:60 (14): 5236-5250 被引量:55
标识
DOI:10.1021/acs.iecr.0c05446
摘要

Although the incorporation of nanoparticles into ultrafiltration polymeric membranes has shown promising outcomes, their commercial implementation has yet to be fulfilled due to inconsistency in data, lack of a reliable recipe for the optimum filler content, and reluctance in disrupting the production line which requires significant time and resources. There is a growing demand among membrane communities for a design platform that can accelerate the discovery of new nanocomposite membranes. In this work, a feed-forward ANN (artificial neural network) model that has one hidden layer and the Bayesian regularization training algorithm were chosen for designing a graphical user interface platform to predict the ultrafiltration nanocomposite membrane performance, that is, solute rejection, flux recovery, and pure water flux, thereby saving time and resources used in membrane design. Experimental data (735 samples from 200 reports published between 2006 and 2020) were derived from the literature for training, validation, and testing of the ANN models. The results indicated that the best 30 ANN models produce the most accurate estimation of membrane performance using the seven input variables of polymer concentration, polymer type, filler concentration, average filler size, solvent concentration (in the dope solution), solvent type, and contact angle on the unseen data set. Furthermore, a sensitivity analysis was performed on the achieved models to identify the most effective input variables for each nanocomposite membrane performance. This work has the potential to be extended to other mixed matrix membrane types that are going to be used for microfiltration, nanofiltration, reverse osmosis, and so forth.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
maud发布了新的文献求助20
1秒前
kk发布了新的文献求助10
1秒前
2秒前
深情安青应助css1997采纳,获得10
2秒前
訫乐完成签到,获得积分10
2秒前
踏实的研完成签到,获得积分10
2秒前
Zephyr完成签到,获得积分10
2秒前
3秒前
充电宝应助tangz采纳,获得10
3秒前
3秒前
Betaremains发布了新的文献求助10
3秒前
孟芷旭孟芷旭完成签到 ,获得积分10
3秒前
123完成签到,获得积分10
4秒前
5秒前
xiuxianpanda完成签到 ,获得积分20
5秒前
典雅的静发布了新的文献求助10
6秒前
6秒前
月亮不说话完成签到 ,获得积分10
6秒前
6秒前
wangayting发布了新的文献求助30
7秒前
7秒前
小黑完成签到,获得积分10
7秒前
麦益颖完成签到,获得积分10
7秒前
8秒前
喵喵喵发布了新的文献求助10
8秒前
LiuXinping完成签到,获得积分10
8秒前
9秒前
小烦完成签到 ,获得积分10
9秒前
ZhiZhengWang发布了新的文献求助10
9秒前
Neko完成签到,获得积分10
9秒前
Betaremains完成签到,获得积分10
10秒前
小李爱吃大西瓜完成签到,获得积分10
10秒前
10秒前
fanglf发布了新的文献求助10
11秒前
11秒前
积极衫完成签到,获得积分10
12秒前
MR_Z完成签到,获得积分10
12秒前
听话的萤完成签到,获得积分10
12秒前
从容雨筠发布了新的文献求助10
12秒前
YukiXu完成签到,获得积分10
13秒前
高分求助中
晶体学对称群—如何读懂和应用国际晶体学表 1500
Problem based learning 1000
Constitutional and Administrative Law 1000
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
Numerical controlled progressive forming as dieless forming 400
Rural Geographies People, Place and the Countryside 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5388268
求助须知:如何正确求助?哪些是违规求助? 4510318
关于积分的说明 14034886
捐赠科研通 4421132
什么是DOI,文献DOI怎么找? 2428650
邀请新用户注册赠送积分活动 1421284
关于科研通互助平台的介绍 1400517