亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Machine Learning for Advanced Design of Nanocomposite Ultrafiltration Membranes

超滤(肾) 纳滤 纳米复合材料 结垢 聚合膜 材料科学 微滤 工艺工程 化学工程 计算机科学 聚合物 色谱法 复合材料 工程类 化学 生物化学
作者
Masoud Fetanat,Mohammadali Keshtiara,Ze‐Xian Low,Ramazan Keyikoğlu,Alireza Khataee,Yasin Orooji,Vicki Chen,Leslie Gregory,Amir Razmjou
出处
期刊:Industrial & Engineering Chemistry Research [American Chemical Society]
卷期号:60 (14): 5236-5250 被引量:55
标识
DOI:10.1021/acs.iecr.0c05446
摘要

Although the incorporation of nanoparticles into ultrafiltration polymeric membranes has shown promising outcomes, their commercial implementation has yet to be fulfilled due to inconsistency in data, lack of a reliable recipe for the optimum filler content, and reluctance in disrupting the production line which requires significant time and resources. There is a growing demand among membrane communities for a design platform that can accelerate the discovery of new nanocomposite membranes. In this work, a feed-forward ANN (artificial neural network) model that has one hidden layer and the Bayesian regularization training algorithm were chosen for designing a graphical user interface platform to predict the ultrafiltration nanocomposite membrane performance, that is, solute rejection, flux recovery, and pure water flux, thereby saving time and resources used in membrane design. Experimental data (735 samples from 200 reports published between 2006 and 2020) were derived from the literature for training, validation, and testing of the ANN models. The results indicated that the best 30 ANN models produce the most accurate estimation of membrane performance using the seven input variables of polymer concentration, polymer type, filler concentration, average filler size, solvent concentration (in the dope solution), solvent type, and contact angle on the unseen data set. Furthermore, a sensitivity analysis was performed on the achieved models to identify the most effective input variables for each nanocomposite membrane performance. This work has the potential to be extended to other mixed matrix membrane types that are going to be used for microfiltration, nanofiltration, reverse osmosis, and so forth.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
10秒前
10秒前
13秒前
lllll1243完成签到,获得积分10
25秒前
1分钟前
Lucas应助靓丽的魔镜采纳,获得10
1分钟前
寒冷的妙梦完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
欣怡完成签到 ,获得积分10
1分钟前
1分钟前
靓丽的魔镜完成签到,获得积分20
1分钟前
阿洁发布了新的文献求助30
1分钟前
2分钟前
ccm应助阿洁采纳,获得30
2分钟前
2分钟前
2分钟前
ling发布了新的文献求助10
3分钟前
3分钟前
3分钟前
ersheng发布了新的文献求助10
3分钟前
Richard完成签到 ,获得积分10
3分钟前
3分钟前
4分钟前
乐乐应助科研通管家采纳,获得10
4分钟前
4分钟前
隐形曼青应助科研通管家采纳,获得10
4分钟前
科研通AI6应助doublenine18采纳,获得30
4分钟前
4分钟前
SciGPT应助ODN采纳,获得10
4分钟前
Andy完成签到,获得积分10
4分钟前
健壮惋清完成签到 ,获得积分10
5分钟前
LEETHEO完成签到,获得积分10
5分钟前
情怀应助科研通管家采纳,获得10
6分钟前
6分钟前
6分钟前
可爱寻芹发布了新的文献求助10
6分钟前
劉浏琉完成签到,获得积分10
6分钟前
zhjl完成签到,获得积分10
6分钟前
shadow完成签到 ,获得积分10
6分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
Psychology of Self-Regulation 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5639688
求助须知:如何正确求助?哪些是违规求助? 4749790
关于积分的说明 15007137
捐赠科研通 4797851
什么是DOI,文献DOI怎么找? 2563972
邀请新用户注册赠送积分活动 1522849
关于科研通互助平台的介绍 1482518