Machine Learning for Advanced Design of Nanocomposite Ultrafiltration Membranes

超滤(肾) 纳滤 纳米复合材料 结垢 聚合膜 材料科学 微滤 工艺工程 化学工程 计算机科学 聚合物 色谱法 复合材料 工程类 化学 生物化学
作者
Masoud Fetanat,Mohammadali Keshtiara,Ze‐Xian Low,Ramazan Keyikoğlu,Alireza Khataee,Yasin Orooji,Vicki Chen,Leslie Gregory,Amir Razmjou
出处
期刊:Industrial & Engineering Chemistry Research [American Chemical Society]
卷期号:60 (14): 5236-5250 被引量:55
标识
DOI:10.1021/acs.iecr.0c05446
摘要

Although the incorporation of nanoparticles into ultrafiltration polymeric membranes has shown promising outcomes, their commercial implementation has yet to be fulfilled due to inconsistency in data, lack of a reliable recipe for the optimum filler content, and reluctance in disrupting the production line which requires significant time and resources. There is a growing demand among membrane communities for a design platform that can accelerate the discovery of new nanocomposite membranes. In this work, a feed-forward ANN (artificial neural network) model that has one hidden layer and the Bayesian regularization training algorithm were chosen for designing a graphical user interface platform to predict the ultrafiltration nanocomposite membrane performance, that is, solute rejection, flux recovery, and pure water flux, thereby saving time and resources used in membrane design. Experimental data (735 samples from 200 reports published between 2006 and 2020) were derived from the literature for training, validation, and testing of the ANN models. The results indicated that the best 30 ANN models produce the most accurate estimation of membrane performance using the seven input variables of polymer concentration, polymer type, filler concentration, average filler size, solvent concentration (in the dope solution), solvent type, and contact angle on the unseen data set. Furthermore, a sensitivity analysis was performed on the achieved models to identify the most effective input variables for each nanocomposite membrane performance. This work has the potential to be extended to other mixed matrix membrane types that are going to be used for microfiltration, nanofiltration, reverse osmosis, and so forth.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
fmd123发布了新的文献求助10
刚刚
可爱的函函应助sonder采纳,获得10
刚刚
1秒前
xingyi发布了新的文献求助10
1秒前
祖f完成签到,获得积分10
2秒前
ChengYonghui完成签到,获得积分10
2秒前
所所应助kkk采纳,获得10
2秒前
2秒前
boltos完成签到,获得积分10
2秒前
彭于彦祖应助liars采纳,获得30
3秒前
3秒前
范范范发布了新的文献求助10
4秒前
脑洞疼应助qweasdzxcqwe采纳,获得30
4秒前
4秒前
思苇完成签到,获得积分10
4秒前
5秒前
飘逸秋荷发布了新的文献求助10
5秒前
lw发布了新的文献求助10
6秒前
6秒前
简单酸奶完成签到,获得积分10
7秒前
7秒前
dddd完成签到,获得积分10
7秒前
林小雨完成签到,获得积分10
7秒前
a水爱科研完成签到,获得积分10
7秒前
量子星尘发布了新的文献求助10
8秒前
干脆苹果发布了新的文献求助10
8秒前
8秒前
乐观囧发布了新的文献求助10
8秒前
8秒前
Jaho完成签到,获得积分10
8秒前
sci完成签到 ,获得积分10
9秒前
Oyster发布了新的文献求助30
10秒前
北珏完成签到,获得积分10
11秒前
11秒前
11秒前
叶子发布了新的文献求助10
11秒前
Jiali发布了新的文献求助20
12秒前
赵文若完成签到,获得积分10
13秒前
accpeted完成签到,获得积分10
13秒前
俗人发布了新的文献求助10
13秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 330
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Aktuelle Entwicklungen in der linguistischen Forschung 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3986829
求助须知:如何正确求助?哪些是违规求助? 3529292
关于积分的说明 11244137
捐赠科研通 3267685
什么是DOI,文献DOI怎么找? 1803843
邀请新用户注册赠送积分活动 881223
科研通“疑难数据库(出版商)”最低求助积分说明 808600