Machine Learning for Advanced Design of Nanocomposite Ultrafiltration Membranes

超滤(肾) 纳滤 纳米复合材料 结垢 聚合膜 材料科学 微滤 工艺工程 化学工程 计算机科学 聚合物 色谱法 复合材料 工程类 化学 生物化学
作者
Masoud Fetanat,Mohammadali Keshtiara,Ze‐Xian Low,Ramazan Keyikoğlu,Alireza Khataee,Yasin Orooji,Vicki Chen,Gregory Leslie,Amir Razmjou
出处
期刊:Industrial & Engineering Chemistry Research [American Chemical Society]
卷期号:60 (14): 5236-5250 被引量:48
标识
DOI:10.1021/acs.iecr.0c05446
摘要

Although the incorporation of nanoparticles into ultrafiltration polymeric membranes has shown promising outcomes, their commercial implementation has yet to be fulfilled due to inconsistency in data, lack of a reliable recipe for the optimum filler content, and reluctance in disrupting the production line which requires significant time and resources. There is a growing demand among membrane communities for a design platform that can accelerate the discovery of new nanocomposite membranes. In this work, a feed-forward ANN (artificial neural network) model that has one hidden layer and the Bayesian regularization training algorithm were chosen for designing a graphical user interface platform to predict the ultrafiltration nanocomposite membrane performance, that is, solute rejection, flux recovery, and pure water flux, thereby saving time and resources used in membrane design. Experimental data (735 samples from 200 reports published between 2006 and 2020) were derived from the literature for training, validation, and testing of the ANN models. The results indicated that the best 30 ANN models produce the most accurate estimation of membrane performance using the seven input variables of polymer concentration, polymer type, filler concentration, average filler size, solvent concentration (in the dope solution), solvent type, and contact angle on the unseen data set. Furthermore, a sensitivity analysis was performed on the achieved models to identify the most effective input variables for each nanocomposite membrane performance. This work has the potential to be extended to other mixed matrix membrane types that are going to be used for microfiltration, nanofiltration, reverse osmosis, and so forth.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lucky发布了新的文献求助10
刚刚
wuyf发布了新的文献求助10
刚刚
刚刚
小小小新完成签到,获得积分10
1秒前
3秒前
3秒前
云轩完成签到,获得积分10
4秒前
123_完成签到,获得积分10
5秒前
5秒前
EM完成签到,获得积分10
7秒前
搜集达人应助小小小新采纳,获得10
8秒前
9秒前
10秒前
摸鱼秋发布了新的文献求助10
10秒前
Lum1na发布了新的文献求助10
12秒前
邮一颗树莓完成签到 ,获得积分10
13秒前
16秒前
16秒前
yomi发布了新的文献求助10
16秒前
17秒前
18秒前
局内人发布了新的文献求助10
19秒前
斯文败类应助Kirin采纳,获得10
19秒前
19秒前
19秒前
Mason发布了新的文献求助10
20秒前
IBMffff应助小肥仔采纳,获得10
20秒前
orange发布了新的文献求助10
20秒前
烟花应助wuyf采纳,获得10
20秒前
orixero应助QST采纳,获得10
20秒前
儒雅沛蓝完成签到,获得积分10
20秒前
李爱国应助WTT采纳,获得10
21秒前
耍酷乌发布了新的文献求助10
22秒前
乐乐应助saisyo采纳,获得10
23秒前
24秒前
狂野悟空发布了新的文献求助10
24秒前
研友_8KAOBn发布了新的文献求助10
24秒前
25秒前
26秒前
忧郁一江关注了科研通微信公众号
26秒前
高分求助中
Histotechnology: A Self-Instructional Text 5th Edition 2000
Rock-Forming Minerals, Volume 3C, Sheet Silicates: Clay Minerals 2000
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
The Healthy Socialist Life in Maoist China 600
The Vladimirov Diaries [by Peter Vladimirov] 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3270735
求助须知:如何正确求助?哪些是违规求助? 2910117
关于积分的说明 8352503
捐赠科研通 2580598
什么是DOI,文献DOI怎么找? 1403560
科研通“疑难数据库(出版商)”最低求助积分说明 655864
邀请新用户注册赠送积分活动 635237