Machine Learning for Advanced Design of Nanocomposite Ultrafiltration Membranes

超滤(肾) 纳滤 纳米复合材料 结垢 聚合膜 材料科学 微滤 工艺工程 化学工程 计算机科学 聚合物 色谱法 复合材料 工程类 化学 生物化学
作者
Masoud Fetanat,Mohammadali Keshtiara,Ze‐Xian Low,Ramazan Keyikoğlu,Alireza Khataee,Yasin Orooji,Vicki Chen,Leslie Gregory,Amir Razmjou
出处
期刊:Industrial & Engineering Chemistry Research [American Chemical Society]
卷期号:60 (14): 5236-5250 被引量:55
标识
DOI:10.1021/acs.iecr.0c05446
摘要

Although the incorporation of nanoparticles into ultrafiltration polymeric membranes has shown promising outcomes, their commercial implementation has yet to be fulfilled due to inconsistency in data, lack of a reliable recipe for the optimum filler content, and reluctance in disrupting the production line which requires significant time and resources. There is a growing demand among membrane communities for a design platform that can accelerate the discovery of new nanocomposite membranes. In this work, a feed-forward ANN (artificial neural network) model that has one hidden layer and the Bayesian regularization training algorithm were chosen for designing a graphical user interface platform to predict the ultrafiltration nanocomposite membrane performance, that is, solute rejection, flux recovery, and pure water flux, thereby saving time and resources used in membrane design. Experimental data (735 samples from 200 reports published between 2006 and 2020) were derived from the literature for training, validation, and testing of the ANN models. The results indicated that the best 30 ANN models produce the most accurate estimation of membrane performance using the seven input variables of polymer concentration, polymer type, filler concentration, average filler size, solvent concentration (in the dope solution), solvent type, and contact angle on the unseen data set. Furthermore, a sensitivity analysis was performed on the achieved models to identify the most effective input variables for each nanocomposite membrane performance. This work has the potential to be extended to other mixed matrix membrane types that are going to be used for microfiltration, nanofiltration, reverse osmosis, and so forth.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
宋浩奇完成签到,获得积分10
刚刚
1秒前
1秒前
王康发布了新的文献求助10
2秒前
隐形曼青应助Daniel2010采纳,获得10
2秒前
DY驳回了英姑应助
3秒前
精灵夜雨完成签到,获得积分10
3秒前
宋浩奇发布了新的文献求助10
4秒前
iNk应助欧皇采纳,获得10
4秒前
4秒前
4秒前
Tyler发布了新的文献求助10
6秒前
6秒前
科研通AI6应助sifLiu采纳,获得10
6秒前
6秒前
害羞彩虹完成签到,获得积分20
7秒前
没有名称完成签到,获得积分10
7秒前
7秒前
王康完成签到,获得积分10
8秒前
8秒前
冷傲迎梦发布了新的文献求助10
9秒前
搜集达人应助111版采纳,获得10
11秒前
wanwusheng完成签到,获得积分10
13秒前
WUJIAYU完成签到,获得积分10
14秒前
16秒前
suger完成签到,获得积分10
17秒前
20秒前
蔺蔺发布了新的文献求助10
21秒前
21秒前
22秒前
23秒前
Yu完成签到,获得积分20
23秒前
废寝忘食发布了新的文献求助10
24秒前
liliuuuuuuuu发布了新的文献求助10
26秒前
ybheart发布了新的文献求助10
27秒前
孙敬涵完成签到,获得积分10
27秒前
Tengami完成签到 ,获得积分10
28秒前
量子星尘发布了新的文献求助10
28秒前
宽宽完成签到,获得积分10
30秒前
李健应助小付采纳,获得10
31秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 851
The International Law of the Sea (fourth edition) 800
A Guide to Genetic Counseling, 3rd Edition 500
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5415163
求助须知:如何正确求助?哪些是违规求助? 4531822
关于积分的说明 14130468
捐赠科研通 4447366
什么是DOI,文献DOI怎么找? 2439667
邀请新用户注册赠送积分活动 1431779
关于科研通互助平台的介绍 1409365