Machine Learning for Advanced Design of Nanocomposite Ultrafiltration Membranes

超滤(肾) 纳滤 纳米复合材料 结垢 聚合膜 材料科学 微滤 工艺工程 化学工程 计算机科学 聚合物 色谱法 复合材料 工程类 化学 生物化学
作者
Masoud Fetanat,Mohammadali Keshtiara,Ze‐Xian Low,Ramazan Keyikoğlu,Alireza Khataee,Yasin Orooji,Vicki Chen,Leslie Gregory,Amir Razmjou
出处
期刊:Industrial & Engineering Chemistry Research [American Chemical Society]
卷期号:60 (14): 5236-5250 被引量:55
标识
DOI:10.1021/acs.iecr.0c05446
摘要

Although the incorporation of nanoparticles into ultrafiltration polymeric membranes has shown promising outcomes, their commercial implementation has yet to be fulfilled due to inconsistency in data, lack of a reliable recipe for the optimum filler content, and reluctance in disrupting the production line which requires significant time and resources. There is a growing demand among membrane communities for a design platform that can accelerate the discovery of new nanocomposite membranes. In this work, a feed-forward ANN (artificial neural network) model that has one hidden layer and the Bayesian regularization training algorithm were chosen for designing a graphical user interface platform to predict the ultrafiltration nanocomposite membrane performance, that is, solute rejection, flux recovery, and pure water flux, thereby saving time and resources used in membrane design. Experimental data (735 samples from 200 reports published between 2006 and 2020) were derived from the literature for training, validation, and testing of the ANN models. The results indicated that the best 30 ANN models produce the most accurate estimation of membrane performance using the seven input variables of polymer concentration, polymer type, filler concentration, average filler size, solvent concentration (in the dope solution), solvent type, and contact angle on the unseen data set. Furthermore, a sensitivity analysis was performed on the achieved models to identify the most effective input variables for each nanocomposite membrane performance. This work has the potential to be extended to other mixed matrix membrane types that are going to be used for microfiltration, nanofiltration, reverse osmosis, and so forth.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wobisheng发布了新的文献求助10
1秒前
1秒前
1秒前
Lucas应助景秋灵采纳,获得10
2秒前
叶航发布了新的文献求助10
4秒前
科研小子完成签到,获得积分10
4秒前
LYZ完成签到,获得积分10
4秒前
背后的飞飞完成签到,获得积分10
6秒前
达芬岐完成签到 ,获得积分10
7秒前
bkagyin应助ddddf采纳,获得30
7秒前
7秒前
8秒前
10秒前
12秒前
彭于晏应助英俊的如柏采纳,获得10
12秒前
12秒前
13秒前
poletar完成签到,获得积分10
13秒前
13秒前
13秒前
13秒前
xiaoxiao完成签到 ,获得积分10
14秒前
车干发布了新的文献求助10
16秒前
17秒前
张一一发布了新的文献求助10
18秒前
个性妙之完成签到,获得积分20
18秒前
搜集达人应助poletar采纳,获得10
19秒前
踏雪发布了新的文献求助10
19秒前
景秋灵发布了新的文献求助10
20秒前
甜美梦槐完成签到,获得积分10
22秒前
zxxxx完成签到,获得积分10
22秒前
科研通AI5应助小安采纳,获得10
23秒前
25秒前
量子星尘发布了新的文献求助10
28秒前
叮当完成签到,获得积分20
28秒前
稳重的傲芙完成签到,获得积分10
29秒前
30秒前
zjjcrystal完成签到,获得积分10
30秒前
Xue_wenqiang发布了新的文献求助10
30秒前
30秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
2026国自然单细胞多组学大红书申报宝典 800
Research Handbook on Corporate Governance in China 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4908652
求助须知:如何正确求助?哪些是违规求助? 4185172
关于积分的说明 12997027
捐赠科研通 3951974
什么是DOI,文献DOI怎么找? 2167233
邀请新用户注册赠送积分活动 1185712
关于科研通互助平台的介绍 1092321