价值(数学)
遗产管理(遗嘱认证法)
分析
政府(语言学)
透视图(图形)
计算机科学
打开数据
测量数据收集
数据科学
知识管理
政治学
人工智能
哲学
法学
万维网
机器学习
统计
语言学
数学
作者
Sungsoo Hwang,Taewoo Nam,Hyunsang Ha
标识
DOI:10.1080/12294659.2021.1974176
摘要
This study proposes a framework of data-driven administration built on both data and value dimensions and thereby suggests four possible types arising from cases (data-rich and value neutral, data-rich and value-controversial, data-poor and value-neutral, and data-poor and value-controversial). Using an exploratory case study approach, we discuss data-driven administration in the perspective of evidence-based policy-making. Following the tradition of evidence-based policy-making, the advancement of data analytics promotes data-driven administration to solve social problems and innovate government operations. We review relevant cases in Korea and then illustrates how the combinations of two dimensions make practices of data-driven administration successful or not. There is little study pointing out to be mindful of values embedded with social issues in certain domains, even when approached with data-driven administration. The framework of data-driven administration can be used for the better understanding of increasing data analytics practices in the public sector with guiding principles of data readiness and value controversy.
科研通智能强力驱动
Strongly Powered by AbleSci AI