已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

To Choose or to Fuse? Scale Selection for Crowd Counting

特征(语言学) 计算机科学 比例(比率) 特征选择 保险丝(电气) 人工智能 像素 模式识别(心理学) 选择(遗传算法) 棱锥(几何) 航程(航空) 机器学习 数据挖掘 数学 工程类 航空航天工程 哲学 物理 电气工程 量子力学 语言学 几何学
作者
Qingyu Song,Chang’an Wang,Yabiao Wang,Ying Tai,Chengjie Wang,Jilin Li,Jian Wu,Jiayi Ma
出处
期刊:Proceedings of the ... AAAI Conference on Artificial Intelligence [Association for the Advancement of Artificial Intelligence (AAAI)]
卷期号:35 (3): 2576-2583 被引量:119
标识
DOI:10.1609/aaai.v35i3.16360
摘要

In this paper, we address the large scale variation problem in crowd counting by taking full advantage of the multi-scale feature representations in a multi-level network. We implement such an idea by keeping the counting error of a patch as small as possible with a proper feature level selection strategy, since a specific feature level tends to perform better for a certain range of scales. However, without scale annotations, it is sub-optimal and error-prone to manually assign the predictions for heads of different scales to specific feature levels. Therefore, we propose a Scale-Adaptive Selection Network (SASNet), which automatically learns the internal correspondence between the scales and the feature levels. Instead of directly using the predictions from the most appropriate feature level as the final estimation, our SASNet also considers the predictions from other feature levels via weighted average, which helps to mitigate the gap between discrete feature levels and continuous scale variation. Since the heads in a local patch share roughly a same scale, we conduct the adaptive selection strategy in a patch-wise style. However, pixels within a patch contribute different counting errors due to the various difficulty degrees of learning. Thus, we further propose a Pyramid Region Awareness Loss (PRA Loss) to recursively select the most hard sub-regions within a patch until reaching the pixel level. With awareness of whether the parent patch is over-estimated or under-estimated, the fine-grained optimization with the PRA Loss for these region-aware hard pixels helps to alleviate the inconsistency problem between training target and evaluation metric. The state-of-the-art results on four datasets demonstrate the superiority of our approach. The code will be available at: https://github.com/TencentYoutuResearch/CrowdCounting-SASNet.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
零零完成签到,获得积分10
1秒前
白开水完成签到,获得积分10
1秒前
2秒前
3秒前
未闻花名完成签到,获得积分10
6秒前
7秒前
清秋发布了新的文献求助30
7秒前
Yihvan发布了新的文献求助10
7秒前
JIE完成签到 ,获得积分10
10秒前
11秒前
受伤月饼发布了新的文献求助10
12秒前
12秒前
13秒前
zshjwk18完成签到,获得积分10
14秒前
17秒前
木木完成签到 ,获得积分10
19秒前
20秒前
20秒前
玩儿完成签到,获得积分10
21秒前
kkk关注了科研通微信公众号
23秒前
24秒前
羡雨0413发布了新的文献求助10
25秒前
zzhou7完成签到,获得积分10
25秒前
红宝发布了新的文献求助10
25秒前
勇攀高峰的科研少女完成签到 ,获得积分10
26秒前
思源应助Conran采纳,获得10
26秒前
27秒前
宋雪芹发布了新的文献求助10
29秒前
天天快乐应助咖啡续命采纳,获得10
29秒前
万能图书馆应助粗暴的达采纳,获得10
31秒前
K.I.D完成签到,获得积分10
31秒前
Lucas应助ChenYX采纳,获得10
33秒前
垚祎完成签到 ,获得积分10
33秒前
赘婿应助漂亮幻莲采纳,获得10
33秒前
星月完成签到 ,获得积分10
36秒前
井野浮应助云云采纳,获得10
37秒前
醉熏的迎天完成签到,获得积分10
40秒前
41秒前
44秒前
45秒前
高分求助中
歯科矯正学 第7版(或第5版) 1004
The diagnosis of sex before birth using cells from the amniotic fluid (a preliminary report) 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Semiconductor Process Reliability in Practice 720
GROUP-THEORY AND POLARIZATION ALGEBRA 500
Mesopotamian divination texts : conversing with the gods : sources from the first millennium BCE 500
Days of Transition. The Parsi Death Rituals(2011) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3229357
求助须知:如何正确求助?哪些是违规求助? 2877059
关于积分的说明 8197722
捐赠科研通 2544406
什么是DOI,文献DOI怎么找? 1374357
科研通“疑难数据库(出版商)”最低求助积分说明 646956
邀请新用户注册赠送积分活动 621749