To Choose or to Fuse? Scale Selection for Crowd Counting

特征(语言学) 计算机科学 比例(比率) 特征选择 保险丝(电气) 人工智能 像素 模式识别(心理学) 选择(遗传算法) 棱锥(几何) 航程(航空) 机器学习 数据挖掘 数学 工程类 航空航天工程 哲学 物理 电气工程 量子力学 语言学 几何学
作者
Qingyu Song,Chang’an Wang,Yabiao Wang,Ying Tai,Chengjie Wang,Jilin Li,Jian Wu,Jiayi Ma
出处
期刊:Proceedings of the ... AAAI Conference on Artificial Intelligence [Association for the Advancement of Artificial Intelligence (AAAI)]
卷期号:35 (3): 2576-2583 被引量:119
标识
DOI:10.1609/aaai.v35i3.16360
摘要

In this paper, we address the large scale variation problem in crowd counting by taking full advantage of the multi-scale feature representations in a multi-level network. We implement such an idea by keeping the counting error of a patch as small as possible with a proper feature level selection strategy, since a specific feature level tends to perform better for a certain range of scales. However, without scale annotations, it is sub-optimal and error-prone to manually assign the predictions for heads of different scales to specific feature levels. Therefore, we propose a Scale-Adaptive Selection Network (SASNet), which automatically learns the internal correspondence between the scales and the feature levels. Instead of directly using the predictions from the most appropriate feature level as the final estimation, our SASNet also considers the predictions from other feature levels via weighted average, which helps to mitigate the gap between discrete feature levels and continuous scale variation. Since the heads in a local patch share roughly a same scale, we conduct the adaptive selection strategy in a patch-wise style. However, pixels within a patch contribute different counting errors due to the various difficulty degrees of learning. Thus, we further propose a Pyramid Region Awareness Loss (PRA Loss) to recursively select the most hard sub-regions within a patch until reaching the pixel level. With awareness of whether the parent patch is over-estimated or under-estimated, the fine-grained optimization with the PRA Loss for these region-aware hard pixels helps to alleviate the inconsistency problem between training target and evaluation metric. The state-of-the-art results on four datasets demonstrate the superiority of our approach. The code will be available at: https://github.com/TencentYoutuResearch/CrowdCounting-SASNet.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
sholai完成签到,获得积分10
1秒前
共享精神应助基尔霍夫采纳,获得10
1秒前
jiang完成签到,获得积分10
2秒前
2秒前
默认用户名完成签到,获得积分10
2秒前
2秒前
2秒前
2秒前
大个应助球闪采纳,获得10
3秒前
3秒前
大模型应助roro熊采纳,获得10
3秒前
3秒前
文艺的忆文完成签到,获得积分10
3秒前
Rick完成签到,获得积分10
4秒前
小杨爱学习应助提拉敏苏采纳,获得10
4秒前
未央发布了新的文献求助10
4秒前
4秒前
5秒前
5秒前
6秒前
Dafuer完成签到,获得积分10
7秒前
zxb发布了新的文献求助10
7秒前
我是老大应助砡君采纳,获得20
7秒前
小龚小龚完成签到 ,获得积分10
7秒前
7秒前
TZH发布了新的文献求助10
7秒前
8秒前
所所应助WJ1989采纳,获得10
8秒前
雷家完成签到,获得积分10
8秒前
小贝完成签到,获得积分10
9秒前
CatC发布了新的文献求助10
10秒前
杨佳燕完成签到 ,获得积分20
10秒前
10秒前
11秒前
11秒前
善学以致用应助fanyaoming采纳,获得10
11秒前
ximei完成签到,获得积分10
11秒前
腼腆的灰狼完成签到,获得积分10
12秒前
wxyshare应助zqw采纳,获得10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
量子光学理论与实验技术 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Beyond the sentence : discourse and sentential form / edited by Jessica R. Wirth 600
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Vertebrate Palaeontology, 5th Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5329963
求助须知:如何正确求助?哪些是违规求助? 4469448
关于积分的说明 13909581
捐赠科研通 4362722
什么是DOI,文献DOI怎么找? 2396446
邀请新用户注册赠送积分活动 1389923
关于科研通互助平台的介绍 1360748