亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

To Choose or to Fuse? Scale Selection for Crowd Counting

特征(语言学) 计算机科学 比例(比率) 特征选择 保险丝(电气) 人工智能 像素 模式识别(心理学) 选择(遗传算法) 棱锥(几何) 航程(航空) 机器学习 数据挖掘 数学 工程类 航空航天工程 哲学 物理 电气工程 量子力学 语言学 几何学
作者
Qingyu Song,Chang’an Wang,Yabiao Wang,Ying Tai,Chengjie Wang,Jilin Li,Jian Wu,Jiayi Ma
出处
期刊:Proceedings of the ... AAAI Conference on Artificial Intelligence [Association for the Advancement of Artificial Intelligence (AAAI)]
卷期号:35 (3): 2576-2583 被引量:119
标识
DOI:10.1609/aaai.v35i3.16360
摘要

In this paper, we address the large scale variation problem in crowd counting by taking full advantage of the multi-scale feature representations in a multi-level network. We implement such an idea by keeping the counting error of a patch as small as possible with a proper feature level selection strategy, since a specific feature level tends to perform better for a certain range of scales. However, without scale annotations, it is sub-optimal and error-prone to manually assign the predictions for heads of different scales to specific feature levels. Therefore, we propose a Scale-Adaptive Selection Network (SASNet), which automatically learns the internal correspondence between the scales and the feature levels. Instead of directly using the predictions from the most appropriate feature level as the final estimation, our SASNet also considers the predictions from other feature levels via weighted average, which helps to mitigate the gap between discrete feature levels and continuous scale variation. Since the heads in a local patch share roughly a same scale, we conduct the adaptive selection strategy in a patch-wise style. However, pixels within a patch contribute different counting errors due to the various difficulty degrees of learning. Thus, we further propose a Pyramid Region Awareness Loss (PRA Loss) to recursively select the most hard sub-regions within a patch until reaching the pixel level. With awareness of whether the parent patch is over-estimated or under-estimated, the fine-grained optimization with the PRA Loss for these region-aware hard pixels helps to alleviate the inconsistency problem between training target and evaluation metric. The state-of-the-art results on four datasets demonstrate the superiority of our approach. The code will be available at: https://github.com/TencentYoutuResearch/CrowdCounting-SASNet.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Ava应助wuxidixi采纳,获得10
10秒前
线条完成签到 ,获得积分10
13秒前
wuxidixi完成签到,获得积分10
17秒前
20秒前
20秒前
21秒前
森森发布了新的文献求助10
26秒前
可乐发布了新的文献求助10
26秒前
FashionBoy应助皮崇知采纳,获得10
27秒前
乐正怡完成签到 ,获得积分0
28秒前
30秒前
饱满元灵发布了新的文献求助10
33秒前
34秒前
光亮君浩完成签到,获得积分10
36秒前
可乐完成签到,获得积分10
38秒前
皮崇知发布了新的文献求助10
39秒前
uikymh完成签到 ,获得积分0
39秒前
40秒前
敬敬完成签到,获得积分10
41秒前
44秒前
Mandy发布了新的文献求助10
46秒前
充电宝应助dyp采纳,获得30
47秒前
52秒前
54秒前
饱满元灵关注了科研通微信公众号
55秒前
迷路的沛芹完成签到 ,获得积分10
56秒前
57秒前
59秒前
eye完成签到,获得积分10
1分钟前
Meyako完成签到 ,获得积分10
1分钟前
1分钟前
123456发布了新的文献求助10
1分钟前
健壮慕梅完成签到,获得积分20
1分钟前
1分钟前
支水云完成签到,获得积分10
1分钟前
沈从云发布了新的文献求助10
1分钟前
健壮慕梅发布了新的文献求助20
1分钟前
heisa完成签到,获得积分10
1分钟前
1分钟前
沛沛完成签到,获得积分10
1分钟前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3965562
求助须知:如何正确求助?哪些是违规求助? 3510843
关于积分的说明 11155315
捐赠科研通 3245323
什么是DOI,文献DOI怎么找? 1792808
邀请新用户注册赠送积分活动 874110
科研通“疑难数据库(出版商)”最低求助积分说明 804176