亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Multitask-Learning-Based Deep Neural Network for Automatic Modulation Classification

计算机科学 卷积神经网络 深度学习 判别式 人工智能 循环神经网络 模式识别(心理学) 人工神经网络 块(置换群论) 特征提取 机器学习 数学 几何学
作者
Shuo Chang,Sai Huang,Ruiyun Zhang,Zhiyong Feng,Liang Liu
出处
期刊:IEEE Internet of Things Journal [Institute of Electrical and Electronics Engineers]
卷期号:9 (3): 2192-2206 被引量:49
标识
DOI:10.1109/jiot.2021.3091523
摘要

Automatic modulation classification (AMC) is to identify the modulation type of a received signal, which plays a vital role to ensure the physical-layer security for Internet of Things (IoT) networks. Inspired by the great success of deep learning in pattern recognition, the convolutional neural network (CNN) and recurrent neural network (RNN) are introduced into the AMC. In general, there are two popular data formats used by AMC, which are the in-phase/quadrature (I/Q) representation and amplitude/phase (A/P) representation, respectively. However, most of AMC algorithms aim at structure innovations, while the differences and characteristics of I/Q and A/P are ignored to analyze. In this article, lots of popular AMC algorithms are reproduced and evaluated on the same data set, where the I/Q and A/P are used, respectively, for comparison. Based on the experimental results, it is found that: 1) CNN-RNN-like algorithms using A/P as input data are superior to those using I/Q at high signal-to-noise ratio (SNR), while it has an opposite result in low SNR and 2) the features extracted from I/Q and A/P are complementary to each other. Motivated by the aforementioned findings, a multitask learning-based deep neural network (MLDNN) is proposed, which effectively fuses I/Q and A/P. In addition, the MLDNN also has a novel backbone, which is made up of three blocks to extract discriminative features, and they are CNN block, bidirectional gated recurrent unit (BiGRU) block, and a step attention fusion network (SAFN) block. Different from most of CNN-RNN-like algorithms (i.e., they only use the last step outputs of RNN), all step outputs of BiGRU can be effectively utilized by MLDNN with the help of SAFN. Extensive simulations are conducted to verify that the proposed MLDNN achieves superior performance in the public benchmark.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
可爱的函函应助李小猫采纳,获得10
29秒前
57秒前
酷波er应助西米采纳,获得10
59秒前
fuiee发布了新的文献求助10
1分钟前
1分钟前
西米发布了新的文献求助10
1分钟前
迷你的幻姬完成签到 ,获得积分10
1分钟前
1分钟前
李小猫发布了新的文献求助10
1分钟前
1分钟前
zhuzhuzhu发布了新的文献求助10
1分钟前
西米完成签到 ,获得积分10
1分钟前
Rn完成签到 ,获得积分10
2分钟前
22222发布了新的文献求助10
2分钟前
Sooinlee完成签到,获得积分20
2分钟前
2分钟前
万能图书馆应助haha采纳,获得10
2分钟前
3分钟前
李李发布了新的文献求助10
3分钟前
3分钟前
fendy应助科研通管家采纳,获得50
3分钟前
悦耳的绮山完成签到,获得积分10
3分钟前
溯风完成签到 ,获得积分10
3分钟前
李李完成签到,获得积分10
4分钟前
4分钟前
fuiee发布了新的文献求助10
4分钟前
heavennew完成签到,获得积分10
4分钟前
天天快乐应助heavennew采纳,获得10
4分钟前
潇潇完成签到 ,获得积分10
4分钟前
4分钟前
深情安青应助顺利山柏采纳,获得10
4分钟前
莫即完成签到 ,获得积分10
5分钟前
鹏虫虫发布了新的文献求助10
5分钟前
5分钟前
5分钟前
heavennew发布了新的文献求助10
5分钟前
6分钟前
6分钟前
揍鱼完成签到 ,获得积分10
6分钟前
DddZS完成签到 ,获得积分10
6分钟前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
An Introduction to Geographical and Urban Economics: A Spiky World Book by Charles van Marrewijk, Harry Garretsen, and Steven Brakman 500
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3150515
求助须知:如何正确求助?哪些是违规求助? 2801967
关于积分的说明 7845974
捐赠科研通 2459264
什么是DOI,文献DOI怎么找? 1309210
科研通“疑难数据库(出版商)”最低求助积分说明 628683
版权声明 601748