清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Large-scale digital mapping of topsoil total nitrogen using machine learning models and associated uncertainty map

克里金 土壤图 计算机科学 比例(比率) 人工神经网络 人工智能 随机森林 土壤水分 遥感 空间变异性
作者
Farzaneh Parsaie,Ahmad Farrokhian Firouzi,Sayed Rohollah Mousavi,Asghar Rahmani,Mohammad Hossein Sedri,Mehdi Homaee
出处
期刊:Environmental Monitoring and Assessment [Springer Nature]
卷期号:193 (4): 162-162 被引量:3
标识
DOI:10.1007/s10661-021-08947-w
摘要

Understanding the spatial distribution of soil nutrients and factors affecting their concentration and availability is crucial for soil fertility management and sustainable land utilization while quantifying factors affecting soil nitrogen distribution in Qorveh-Dehgolan plain is mostly lacking. This study, thus, aimed at digital modeling and mapping the spatial distribution of topsoil total nitrogen (TN) in Qorveh-Dehgolan plain with an area of 150,000 ha using random forest (RF), decision tree (DT), and cubist (CB) algorithms. A total of 130 observation points were collected from a depth of 0 to 30 cm from topsoil surfaces based on a random sampling pattern. Then, soil physicochemical properties, calcium carbonate equivalent, organic carbon, and topsoil total nitrogen were measured. A number of 51 environmental variables including 31 geomorphometric attributes derived from a digital elevation model with 12.5-m spatial resolution, 13 spectral indices and reflectance from SENTINEL-2 satellite (MSIsensor), and five soil properties and two spatial variables of latitude and longitude were used as covariates for digital mapping of topsoil total nitrogen. The most appropriate covariates were then selected by the Boruta algorithm in the R software environment. A standard deviation map was produced to show model uncertainty. The covariate selection resulted in the separation of 14 effective covariates in the spatial prediction of topsoil total nitrogen by using the data mining algorithms. The validation of digital mapping of topsoil total nitrogen by RF, DT, and CB models using 20% of independent data showed root mean square error (RMSE) of 0.032, 0.035, and 0.043%; mean absolute error (MAE) of 0.0008, 0.001, and 0.002%; and based on the coefficients of determination of 0.42, 0.38, 0.35, respectively. Relative importance (RI) of environmental covariates using the %IncMSE index indicated the importance of two geomorphometric variables of midslope position and normalized height along with SAVI and NDVI remote sensing variables in the spatial modeling and distribution of total nitrogen in the studied lands. The RF prediction and associated uncertainty maps, with show high accuracy and low standard deviation in the most part of study area, reveled low overfitting and overtraining in soil-landscape modeling; so, this model can lead to the development of a digital map of soil surface properties with acceptable accuracy for sustainable land utilization.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
今我来思完成签到 ,获得积分10
24秒前
小蘑菇应助neptuniar采纳,获得10
34秒前
甜美的觅荷完成签到,获得积分10
41秒前
尊敬的凌晴完成签到 ,获得积分10
49秒前
59秒前
愤怒的念蕾完成签到,获得积分10
1分钟前
cgs完成签到 ,获得积分10
1分钟前
自由的雅旋完成签到 ,获得积分10
1分钟前
练得身形似鹤形完成签到 ,获得积分10
1分钟前
悠树里完成签到,获得积分10
1分钟前
gwbk完成签到,获得积分10
1分钟前
隐形曼青应助科研通管家采纳,获得10
1分钟前
1分钟前
1分钟前
2分钟前
neptuniar发布了新的文献求助10
2分钟前
雪花完成签到 ,获得积分10
2分钟前
2分钟前
量子星尘发布了新的文献求助10
2分钟前
keke发布了新的文献求助10
2分钟前
外向白竹完成签到,获得积分20
2分钟前
慕青应助keke采纳,获得10
2分钟前
jlwang完成签到,获得积分10
2分钟前
Bond完成签到 ,获得积分10
3分钟前
红茸茸羊完成签到 ,获得积分10
3分钟前
3分钟前
简单花花完成签到,获得积分10
3分钟前
mojiu发布了新的文献求助30
3分钟前
Tong完成签到,获得积分0
3分钟前
外向白竹发布了新的文献求助10
3分钟前
酷然完成签到,获得积分10
4分钟前
Benhnhk21完成签到,获得积分10
4分钟前
4分钟前
知行者完成签到 ,获得积分10
4分钟前
4分钟前
开心每一天完成签到 ,获得积分10
5分钟前
爆米花应助keke采纳,获得10
5分钟前
5分钟前
AM发布了新的文献求助10
5分钟前
mojiu完成签到,获得积分10
5分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Terminologia Embryologica 500
Process Plant Design for Chemical Engineers 400
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5612005
求助须知:如何正确求助?哪些是违规求助? 4696171
关于积分的说明 14890481
捐赠科研通 4730707
什么是DOI,文献DOI怎么找? 2546088
邀请新用户注册赠送积分活动 1510419
关于科研通互助平台的介绍 1473299