Large-scale digital mapping of topsoil total nitrogen using machine learning models and associated uncertainty map

克里金 土壤图 计算机科学 比例(比率) 人工神经网络 人工智能 随机森林 土壤水分 遥感 空间变异性
作者
Farzaneh Parsaie,Ahmad Farrokhian Firouzi,Sayed Rohollah Mousavi,Asghar Rahmani,Mohammad Hossein Sedri,Mehdi Homaee
出处
期刊:Environmental Monitoring and Assessment [Springer Nature]
卷期号:193 (4): 162-162 被引量:3
标识
DOI:10.1007/s10661-021-08947-w
摘要

Understanding the spatial distribution of soil nutrients and factors affecting their concentration and availability is crucial for soil fertility management and sustainable land utilization while quantifying factors affecting soil nitrogen distribution in Qorveh-Dehgolan plain is mostly lacking. This study, thus, aimed at digital modeling and mapping the spatial distribution of topsoil total nitrogen (TN) in Qorveh-Dehgolan plain with an area of 150,000 ha using random forest (RF), decision tree (DT), and cubist (CB) algorithms. A total of 130 observation points were collected from a depth of 0 to 30 cm from topsoil surfaces based on a random sampling pattern. Then, soil physicochemical properties, calcium carbonate equivalent, organic carbon, and topsoil total nitrogen were measured. A number of 51 environmental variables including 31 geomorphometric attributes derived from a digital elevation model with 12.5-m spatial resolution, 13 spectral indices and reflectance from SENTINEL-2 satellite (MSIsensor), and five soil properties and two spatial variables of latitude and longitude were used as covariates for digital mapping of topsoil total nitrogen. The most appropriate covariates were then selected by the Boruta algorithm in the R software environment. A standard deviation map was produced to show model uncertainty. The covariate selection resulted in the separation of 14 effective covariates in the spatial prediction of topsoil total nitrogen by using the data mining algorithms. The validation of digital mapping of topsoil total nitrogen by RF, DT, and CB models using 20% of independent data showed root mean square error (RMSE) of 0.032, 0.035, and 0.043%; mean absolute error (MAE) of 0.0008, 0.001, and 0.002%; and based on the coefficients of determination of 0.42, 0.38, 0.35, respectively. Relative importance (RI) of environmental covariates using the %IncMSE index indicated the importance of two geomorphometric variables of midslope position and normalized height along with SAVI and NDVI remote sensing variables in the spatial modeling and distribution of total nitrogen in the studied lands. The RF prediction and associated uncertainty maps, with show high accuracy and low standard deviation in the most part of study area, reveled low overfitting and overtraining in soil-landscape modeling; so, this model can lead to the development of a digital map of soil surface properties with acceptable accuracy for sustainable land utilization.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Jack123完成签到,获得积分10
刚刚
2秒前
岛L发布了新的文献求助10
2秒前
Pureasy完成签到,获得积分10
2秒前
pluto应助AnjeXi采纳,获得10
3秒前
雪白的千雁完成签到 ,获得积分10
3秒前
何嘉莉发布了新的文献求助10
4秒前
研友_VZG7GZ应助坦率曼香采纳,获得10
4秒前
科研通AI5应助俭朴的猫咪采纳,获得10
5秒前
6秒前
无心的胡萝卜完成签到,获得积分10
7秒前
传奇3应助岛L采纳,获得10
8秒前
9秒前
浅陌亦汐完成签到,获得积分10
10秒前
10秒前
11秒前
挺喜欢你完成签到,获得积分10
11秒前
12秒前
陈三完成签到,获得积分10
13秒前
萝卜完成签到,获得积分10
13秒前
jiangmingjiao完成签到 ,获得积分10
15秒前
呃呃呃完成签到 ,获得积分10
15秒前
黄少侠完成签到 ,获得积分10
15秒前
让我瞅瞅发布了新的文献求助10
16秒前
舒适行天完成签到,获得积分10
16秒前
积极的邴发布了新的文献求助10
17秒前
17秒前
emma完成签到,获得积分10
17秒前
思源应助专注科研采纳,获得10
18秒前
18秒前
Jasper应助沉寂的希望采纳,获得10
20秒前
20秒前
hhhhhh完成签到 ,获得积分10
21秒前
liuzhifenshen完成签到,获得积分10
22秒前
22秒前
22秒前
小杨发布了新的文献求助10
23秒前
niu完成签到,获得积分10
23秒前
老黑完成签到,获得积分10
23秒前
BCS完成签到,获得积分10
24秒前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Covalent Organic Frameworks 1000
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Theory of Block Polymer Self-Assembly 750
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3479504
求助须知:如何正确求助?哪些是违规求助? 3070099
关于积分的说明 9116702
捐赠科研通 2761842
什么是DOI,文献DOI怎么找? 1515589
邀请新用户注册赠送积分活动 700982
科研通“疑难数据库(出版商)”最低求助积分说明 699985