The stacking strategy-based hybrid framework for identifying non-coding RNAs.

生物 生物信息学 小RNA 非编码RNA 基因
作者
Xin Wang,Yang Yang,Jian Liu,Guohua Wang
出处
期刊:Briefings in Bioinformatics [Oxford University Press]
卷期号:22 (5) 被引量:9
标识
DOI:10.1093/bib/bbab023
摘要

With the development of next-generation sequencing technology, a large number of transcripts need to be analyzed, and it has been a challenge to distinguish non-coding ribonucleic acid (RNAs) (ncRNAs) from coding RNAs. And for non-model organisms, due to the lack of transcriptional data, many existing methods cannot identify them. Therefore, in addition to using deoxyribonucleic acid-based and RNA-based features, we also proposed a hybrid framework based on the stacking strategy to identify ncRNAs, and we innovatively added eight features based on predicted peptides. The proposed framework was based on stacking two-layer classifier which combined random forest (RF), LightGBM, XGBoost and logistic regression (LR) models. We used this framework to build two types of models. For cross-species ncRNAs identification model, we tested it on six different species: human, mouse, zebrafish, fruit fly, worm and Arabidopsis. Compared with other tools, our model was the best in datasets of Arabidopsis, worm and zebrafish with the accuracy of 98.36%, 99.65% and 94.12%. For performance metrics analysis, the datasets of the six species were considered as a whole set, and the sensitivity, accuracy, precision and F1 values of our model were the best. For the plant-specific ncRNAs identification model, the average values of the six metrics of the two experiments were all greater than 95%, which demonstrated it can be used to identify ncRNAs in plants. The above indicates that the hybrid framework we designed is universal between animals and plants and has significant advantages in the identification of cross-species ncRNAs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
潇湘雨发布了新的文献求助10
刚刚
刚刚
刚刚
卫化蛹发布了新的文献求助10
刚刚
品品发布了新的文献求助10
1秒前
牧长一完成签到 ,获得积分0
1秒前
可乐鸡翅完成签到,获得积分10
1秒前
1秒前
2秒前
2秒前
林轩发布了新的文献求助10
2秒前
2秒前
北过发布了新的文献求助10
2秒前
3秒前
Rosaline发布了新的文献求助10
4秒前
wanci应助呦呦又鹿采纳,获得50
5秒前
LU完成签到 ,获得积分10
5秒前
XPR发布了新的文献求助10
6秒前
why发布了新的文献求助10
7秒前
京昭发布了新的文献求助10
7秒前
半生瓜711321完成签到,获得积分10
7秒前
7秒前
思与省完成签到,获得积分10
8秒前
星曳完成签到,获得积分10
8秒前
赵大大发布了新的文献求助10
8秒前
品品完成签到,获得积分10
10秒前
Komorebi完成签到,获得积分10
11秒前
大个应助西西弗采纳,获得10
11秒前
潇湘雨完成签到,获得积分10
11秒前
dzbb应助冰火菠萝包采纳,获得10
11秒前
12秒前
13秒前
科研通AI2S应助夜无疆采纳,获得20
14秒前
14秒前
蔺铁身发布了新的文献求助10
15秒前
15秒前
京昭完成签到,获得积分10
15秒前
njseu发布了新的文献求助10
17秒前
刘小孩完成签到,获得积分10
17秒前
符语山发布了新的文献求助10
18秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3148466
求助须知:如何正确求助?哪些是违规求助? 2799588
关于积分的说明 7836005
捐赠科研通 2456991
什么是DOI,文献DOI怎么找? 1307679
科研通“疑难数据库(出版商)”最低求助积分说明 628245
版权声明 601655