The stacking strategy-based hybrid framework for identifying non-coding RNAs.

生物 生物信息学 小RNA 非编码RNA 基因
作者
Xin Wang,Yang Yang,Jian Liu,Guohua Wang
出处
期刊:Briefings in Bioinformatics [Oxford University Press]
卷期号:22 (5) 被引量:9
标识
DOI:10.1093/bib/bbab023
摘要

With the development of next-generation sequencing technology, a large number of transcripts need to be analyzed, and it has been a challenge to distinguish non-coding ribonucleic acid (RNAs) (ncRNAs) from coding RNAs. And for non-model organisms, due to the lack of transcriptional data, many existing methods cannot identify them. Therefore, in addition to using deoxyribonucleic acid-based and RNA-based features, we also proposed a hybrid framework based on the stacking strategy to identify ncRNAs, and we innovatively added eight features based on predicted peptides. The proposed framework was based on stacking two-layer classifier which combined random forest (RF), LightGBM, XGBoost and logistic regression (LR) models. We used this framework to build two types of models. For cross-species ncRNAs identification model, we tested it on six different species: human, mouse, zebrafish, fruit fly, worm and Arabidopsis. Compared with other tools, our model was the best in datasets of Arabidopsis, worm and zebrafish with the accuracy of 98.36%, 99.65% and 94.12%. For performance metrics analysis, the datasets of the six species were considered as a whole set, and the sensitivity, accuracy, precision and F1 values of our model were the best. For the plant-specific ncRNAs identification model, the average values of the six metrics of the two experiments were all greater than 95%, which demonstrated it can be used to identify ncRNAs in plants. The above indicates that the hybrid framework we designed is universal between animals and plants and has significant advantages in the identification of cross-species ncRNAs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刘萄完成签到,获得积分10
2秒前
nenoaowu发布了新的文献求助30
2秒前
爆米花应助Sanche采纳,获得10
3秒前
丁真的草莓烟弹完成签到,获得积分10
4秒前
乔杰发布了新的文献求助10
4秒前
Yang发布了新的文献求助200
5秒前
7秒前
xingxingwang发布了新的文献求助10
7秒前
9秒前
Leo2025完成签到,获得积分10
9秒前
wanci应助nenoaowu采纳,获得10
10秒前
刘小刘认真读研完成签到,获得积分10
10秒前
11秒前
lkk发布了新的文献求助50
12秒前
微微发布了新的文献求助10
12秒前
15秒前
nenoaowu完成签到,获得积分10
16秒前
Sanche发布了新的文献求助10
16秒前
善学以致用应助junjie采纳,获得10
17秒前
缓慢的开山完成签到 ,获得积分10
17秒前
19秒前
秀丽黑裤完成签到,获得积分20
19秒前
能干砖家发布了新的文献求助10
19秒前
happyccch发布了新的文献求助10
20秒前
20秒前
20秒前
20秒前
RW乾完成签到,获得积分10
21秒前
善良青筠完成签到,获得积分10
21秒前
量子星尘发布了新的文献求助10
22秒前
MZ发布了新的文献求助10
24秒前
24秒前
秀丽黑裤发布了新的文献求助10
24秒前
RaynorHank发布了新的文献求助10
24秒前
25秒前
加贝火火完成签到 ,获得积分10
25秒前
乔杰完成签到,获得积分10
25秒前
ZZzz完成签到,获得积分10
27秒前
AGuang应助包容新蕾采纳,获得10
29秒前
phy发布了新的文献求助10
29秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3958021
求助须知:如何正确求助?哪些是违规求助? 3504166
关于积分的说明 11117289
捐赠科研通 3235515
什么是DOI,文献DOI怎么找? 1788289
邀请新用户注册赠送积分活动 871204
科研通“疑难数据库(出版商)”最低求助积分说明 802511