Well logging curve reconstruction based on kernel ridge regression

山脊 登录中 测井 地质学 核(代数) 回归 多元统计 回归分析 非线性系统 曲线拟合 非线性回归 计算机科学 石油工程 统计 数学 古生物学 地理 林业 组合数学 物理 量子力学
作者
Pengpeng Fan,Rui Deng,Jinquan Qiu,Zhongliang Zhao,Shengli Wu
出处
期刊:Arabian Journal of Geosciences [Springer Nature]
卷期号:14 (16) 被引量:52
标识
DOI:10.1007/s12517-021-07792-y
摘要

The logging curve is the most basic and important part of the petroleum industry. It plays an incomparable role in identifying of rock and oil-gas layers, and analyzing the geological structure of the formation. It also can be used to calculate porosity, permeability, and saturation. The quality of logging curve is the premise to ensure the reliability of logging interpretation results. However, in the actual application of logging data, it is often occurred that the logging curve is distorted or missing in some well segments due to tool measurement or wellbore reasons, which affects the accuracy of logging results. At present, the conventional linear fitting and statistical analysis has been difficult to satisfy the requirements for ultra-fine reservoir analysis and evaluation. Kernel ridge regression is a multivariate nonlinear regression analysis method. It combines kernel function and least square regression analysis. This method is used to reconstruct the acoustic curve of 20 wells in the study area and explain it finely. The results show that the kernel ridge regression method can be used for multivariate nonlinear regression analysis. The curve predicted by this method has high accuracy and is worthy of popularization and use in oil fields.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
科研通AI5应助111111111采纳,获得10
1秒前
1秒前
sunsunsun完成签到,获得积分10
1秒前
哎嘤斯坦完成签到,获得积分10
3秒前
3秒前
sweetbearm应助潦草采纳,获得10
4秒前
sunsunsun发布了新的文献求助10
4秒前
酷波er应助Mars采纳,获得10
5秒前
迪士尼在逃后母完成签到,获得积分10
5秒前
5秒前
我是老大应助su采纳,获得10
6秒前
hhh发布了新的文献求助10
7秒前
8秒前
科研通AI5应助魏伯安采纳,获得10
9秒前
9秒前
神可馨完成签到 ,获得积分10
10秒前
Hangerli发布了新的文献求助20
10秒前
HealthyCH完成签到,获得积分10
10秒前
li完成签到,获得积分10
11秒前
12秒前
ononon发布了新的文献求助10
14秒前
14秒前
liu完成签到,获得积分10
16秒前
LWJ发布了新的文献求助10
17秒前
18秒前
大反应釜完成签到,获得积分10
18秒前
TT发布了新的文献求助10
21秒前
Jenny发布了新的文献求助10
23秒前
23秒前
完美凝竹发布了新的文献求助10
23秒前
我是站长才怪应助细腻沅采纳,获得10
24秒前
JG完成签到 ,获得积分10
24秒前
hhh完成签到,获得积分20
24秒前
科研通AI5应助想瘦的海豹采纳,获得10
25秒前
随性完成签到 ,获得积分10
25秒前
自由的信仰完成签到,获得积分10
26秒前
28秒前
29秒前
29秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527990
求助须知:如何正确求助?哪些是违规求助? 3108173
关于积分的说明 9287913
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540119
邀请新用户注册赠送积分活动 716941
科研通“疑难数据库(出版商)”最低求助积分说明 709824