清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Modeling soil temperature using air temperature features in diverse climatic conditions with complementary machine learning models

空气温度 机器学习 预测建模 人工智能 人工神经网络 计算机科学 航程(航空) 气候变化 环境科学 气象学 工程类 地理 地质学 海洋学 航空航天工程
作者
Maryam Bayatvarkeshi,Suraj Kumar Bhagat,Kourosh Mohammadi,Özgür Kişi,Mohsen Farahani,Arman Hasani,Ravinesh C. Deo,Zaher Mundher Yaseen‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬
出处
期刊:Computers and Electronics in Agriculture [Elsevier]
卷期号:185: 106158-106158 被引量:21
标识
DOI:10.1016/j.compag.2021.106158
摘要

Soil temperature (ST) is an essential catchment property strongly influenced by air temperature (Ta). ST is also the key factor in sustainable agricultural developments, so researchers are still motivated to develop robust machine learning (ML) models to predict ST more reliably. Four different ML models, utilizing the standalone algorithms (i.e., artificial neural networks: ‘ANN’ and co-active neuro-fuzzy inference systems: ‘CANFIS’) and complementary algorithms (i.e., wavelet transformation combined with ANN: ‘WANN’ and wavelet transformation combined with CANFIS: ‘WCANFIS’) were developed to predict the ST at six meteorological stations incorporating a wide range of climatic features to improve the overall performance. The study has utilized data over the period 2000–2010, collected at 12 locations in Iran. In the first phase of this research, the effects of climate variability on the changes in ST at different depths (i.e., 5, 10, 20, 30, 50 and 100 cm) were explored using air temperature as the exploratory and ST as the response variable. Assessing the performance of the predictive models used in ST prediction, the results indicated good predictive capability of the WCANFIS model, thus, advocating its potential utility in ST prediction problems, especially over diverse climatic regions. This study has also ascertained that the minimum and the maximum predictive errors were encountered at a depth of about 20 cm and 100 cm, respectively. The assessment of climatic features based on air temperature datasets on the performance of the models indicated the highest efficacy demonstrated by the ANN model for the case A–C–W climate type (i.e., a moist climate regime: Arid, temperature regime in winter: Cool, and temperature regime in summer: Warm), in comparison with the PH–C–W climate type (moist regime: Per-humid) for the other best ML models (i.e., WANN, WCANFIS and CANFIS). The order of the model accuracies based on the root mean square error (RMSE) can be ranked with error values of as: WCANFIS = 0.43 °C, ANN = 0.69 °C, CANFIS = 2.16 °C and WANN = 2.31 °C, demonstrating the wavelet-based CANFIS model to exceed the performance of the counterpart comparative models. The present study provides evidence of successfully developing new ML models, improved through wavelet transform for effective feature extraction, and the importance of such hybrid models that have practical implications in studying soil temperature based on air temperature feature inputs in diverse climatic conditions. The outcomes of this study are expected to support key decisions in sustainable agriculture and other related areas where soil health, based on air temperature changes, needs to be monitored or predicted.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
天边的云彩完成签到 ,获得积分10
15秒前
科研通AI2S应助科研通管家采纳,获得10
47秒前
山山而川完成签到 ,获得积分10
49秒前
courage完成签到,获得积分10
1分钟前
科研通AI2S应助jlwang采纳,获得10
1分钟前
锋feng完成签到 ,获得积分10
1分钟前
DJ_Tokyo完成签到,获得积分10
1分钟前
1分钟前
悟川完成签到 ,获得积分10
2分钟前
liuliu完成签到,获得积分10
2分钟前
2分钟前
Emperor完成签到 ,获得积分0
2分钟前
A,w携念e行ོ完成签到,获得积分10
2分钟前
Cole发布了新的文献求助10
2分钟前
风信子完成签到,获得积分10
2分钟前
Aaman完成签到,获得积分10
3分钟前
Zrysaa完成签到,获得积分10
4分钟前
跳跃的鹏飞完成签到 ,获得积分10
4分钟前
lovexa完成签到,获得积分10
4分钟前
wxyinhefeng完成签到 ,获得积分10
4分钟前
a46539749完成签到 ,获得积分10
4分钟前
leena完成签到,获得积分10
4分钟前
科研通AI2S应助科研通管家采纳,获得10
4分钟前
海盐气泡水完成签到,获得积分10
4分钟前
golfgold完成签到,获得积分10
5分钟前
zhdjj完成签到 ,获得积分10
5分钟前
5分钟前
lt0217发布了新的文献求助10
5分钟前
jlwang完成签到,获得积分10
5分钟前
上下完成签到 ,获得积分10
5分钟前
5分钟前
风秋杨完成签到 ,获得积分10
5分钟前
Arthur完成签到 ,获得积分10
5分钟前
深情安青应助毕书白采纳,获得10
5分钟前
juan完成签到 ,获得积分10
5分钟前
管靖易完成签到 ,获得积分10
5分钟前
华仔应助毕书白采纳,获得10
6分钟前
科研通AI2S应助科研通管家采纳,获得10
6分钟前
7分钟前
毕书白发布了新的文献求助10
7分钟前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Aspects of Babylonian celestial divination : the lunar eclipse tablets of enuma anu enlil 1500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
体心立方金属铌、钽及其硼化物中滑移与孪生机制的研究 800
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3450460
求助须知:如何正确求助?哪些是违规求助? 3045952
关于积分的说明 9003759
捐赠科研通 2734604
什么是DOI,文献DOI怎么找? 1500096
科研通“疑难数据库(出版商)”最低求助积分说明 693341
邀请新用户注册赠送积分活动 691477