Controlling potential difference between electrodes based on self-consistent-charge density functional tight binding

密度泛函理论 电极 电解质 电极电位 电化学 化学 化学物理 标准电极电位 电位 电化学电位 电荷密度 势能 材料科学 分子物理学 计算化学 原子物理学 电压 物理化学 量子力学 物理
作者
Jun Oshiki,Hiroshi Nakano,Hirofumi Sato
出处
期刊:Journal of Chemical Physics [American Institute of Physics]
卷期号:154 (14) 被引量:8
标识
DOI:10.1063/5.0047992
摘要

A proper understanding and description of the electronic response of the electrode surfaces in electrochemical systems are quite important because the interactions between the electrode surface and electrolyte give rise to unique and useful interfacial properties. Atomistic modeling of the electrodes requires not only an accurate description of the electronic response under a constant-potential condition but also computational efficiency in order to deal with systems large enough to investigate the interfacial electrolyte structures. We thus develop a self-consistent-charge density functional tight binding based method to model a pair of electrodes in electrochemical cells under the constant-potential condition. The method is more efficient than the (ab initio) density functional theory calculations so that it can treat systems as large as those studied in classical atomistic simulations. It can also describe the electronic response of electrodes quantum mechanically and more accurately than the classical counterparts. The constant-potential condition is introduced through a Legendre transformation of the electronic energy with respect to the difference in the number of electrons in the two electrodes and their electrochemical potential difference, through which the Kohn–Sham equations for each electrode are variationally derived. The method is applied to platinum electrodes faced parallel to each other under an applied voltage. The electronic response to the voltage and a charged particle is compared with the result of a classical constant-potential method based on the chemical potential equalization principle.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
三金发布了新的文献求助10
1秒前
2秒前
完美楠人发布了新的文献求助20
3秒前
4秒前
8秒前
8秒前
第七个星球完成签到,获得积分10
12秒前
林lin完成签到,获得积分10
13秒前
sal发布了新的文献求助10
13秒前
14秒前
20秒前
bagai完成签到,获得积分10
20秒前
20秒前
20秒前
Akim应助强健的月饼采纳,获得10
21秒前
21秒前
小浣熊完成签到 ,获得积分10
21秒前
安陌煜发布了新的文献求助30
25秒前
26秒前
丘比特应助Eureka采纳,获得10
28秒前
一只小松鼠关注了科研通微信公众号
28秒前
30秒前
搜集达人应助小岛采纳,获得10
30秒前
卡皮巴拉发布了新的文献求助10
30秒前
活泼的熊猫完成签到,获得积分20
31秒前
32秒前
33秒前
34秒前
JJJJJin应助三金采纳,获得50
35秒前
35秒前
36秒前
37秒前
39秒前
40秒前
41秒前
花凉发布了新的文献求助10
42秒前
文献小松鼠完成签到,获得积分10
42秒前
山真页完成签到,获得积分10
42秒前
科研通AI2S应助微雨初晴采纳,获得10
44秒前
44秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Aspects of Babylonian celestial divination : the lunar eclipse tablets of enuma anu enlil 1500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
지식생태학: 생태학, 죽은 지식을 깨우다 600
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3459147
求助须知:如何正确求助?哪些是违规求助? 3053698
关于积分的说明 9037829
捐赠科研通 2742963
什么是DOI,文献DOI怎么找? 1504592
科研通“疑难数据库(出版商)”最低求助积分说明 695334
邀请新用户注册赠送积分活动 694644