A comparison of global and regional open datasets for urban greenspace mapping

土地覆盖 采样(信号处理) 封面(代数) 参考数据 计算机科学 土地利用 地理 环境科学 地图学 数据挖掘 生态学 生物 机械工程 滤波器(信号处理) 工程类 计算机视觉
作者
Yiming Liao,Qi Zhou,Xuanqiao Jing
出处
期刊:Urban Forestry & Urban Greening [Elsevier]
卷期号:62: 127132-127132 被引量:14
标识
DOI:10.1016/j.ufug.2021.127132
摘要

Greenspace has positive influences on urban environment and human health, and thus it is desirable to acquire data for (urban) greenspace mapping. Nowadays, global and regional open land-use/land-cover datasets have become essential sources for greenspace mapping, but few studies have quantitatively compared them. To fill this gap, this study carries out a quantitative comparison of six global and regional open datasets (CGLS-LC100, CLC, GLC30, UA, FROM-GLC10 and OSM) for greenspace mapping. First of all, the most appropriate land-use/land-cover classes selected as greenspace are analyzed for each open dataset; then, different open datasets are evaluated and compared in terms of five measures (accuracy, precision, recall, F1-score and green coverage rate). Five urban areas in UK are chosen as study areas. Two categories of reference datasets are used for evaluation, including an Ordnance Survey (OS) greenspace dataset in UK and a number of sampling points classified by referring to Google Earth. Results show that: the OSM dataset performs the best, while comparing with the OS dataset (characterized by a narrowly interpreted greenspace); and the FROM-GLC10 dataset performs the best, while comparing with the sampling points (characterized by a broadly interpreted greenspace). Moreover, by using these two open datasets, most quantitative results are close to or higher than 80 %, in terms of the accuracy, precision, recall and F1-score; in most cases there also is the smallest difference between using these two open datasets and corresponding reference datasets, in terms of the green coverage rate. These findings have benefits for researchers and planners to choose an appropriate open dataset for greenspace mapping.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
nmeiko发布了新的文献求助10
1秒前
单薄的寻桃给单薄的寻桃的求助进行了留言
4秒前
6秒前
内向汽车完成签到,获得积分10
9秒前
可爱的函函应助文静人达采纳,获得10
18秒前
哭泣青烟完成签到 ,获得积分10
20秒前
明理如凡完成签到,获得积分20
20秒前
诚心八宝粥完成签到,获得积分10
22秒前
24秒前
27秒前
酷波er应助耍酷皮皮虾采纳,获得10
28秒前
英吉利25发布了新的文献求助10
29秒前
LDoll发布了新的文献求助10
34秒前
du完成签到 ,获得积分10
34秒前
35秒前
40秒前
Orange应助xuan采纳,获得10
41秒前
nmeiko完成签到,获得积分20
44秒前
xzgwbh完成签到,获得积分10
44秒前
科目三应助LDoll采纳,获得10
44秒前
46秒前
46秒前
浮游应助yiqi采纳,获得10
46秒前
wubinbin完成签到 ,获得积分10
46秒前
hjjjxxxx发布了新的文献求助30
49秒前
50秒前
不能吃了发布了新的文献求助10
50秒前
xuan发布了新的文献求助10
53秒前
hjjjxxxx完成签到,获得积分10
57秒前
nmeiko发布了新的文献求助10
58秒前
1分钟前
山屿发布了新的文献求助30
1分钟前
科研顺发布了新的文献求助10
1分钟前
AIDIN完成签到 ,获得积分10
1分钟前
1分钟前
ding应助Bismarck采纳,获得10
1分钟前
1分钟前
1分钟前
1分钟前
科研顺完成签到,获得积分10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5557689
求助须知:如何正确求助?哪些是违规求助? 4642768
关于积分的说明 14669036
捐赠科研通 4584191
什么是DOI,文献DOI怎么找? 2514668
邀请新用户注册赠送积分活动 1488870
关于科研通互助平台的介绍 1459538