A comparison of global and regional open datasets for urban greenspace mapping

土地覆盖 采样(信号处理) 封面(代数) 参考数据 计算机科学 土地利用 地理 环境科学 地图学 数据挖掘 生态学 计算机视觉 机械工程 生物 滤波器(信号处理) 工程类
作者
Yiming Liao,Qi Zhou,Xuanqiao Jing
出处
期刊:Urban Forestry & Urban Greening [Elsevier BV]
卷期号:62: 127132-127132 被引量:14
标识
DOI:10.1016/j.ufug.2021.127132
摘要

Greenspace has positive influences on urban environment and human health, and thus it is desirable to acquire data for (urban) greenspace mapping. Nowadays, global and regional open land-use/land-cover datasets have become essential sources for greenspace mapping, but few studies have quantitatively compared them. To fill this gap, this study carries out a quantitative comparison of six global and regional open datasets (CGLS-LC100, CLC, GLC30, UA, FROM-GLC10 and OSM) for greenspace mapping. First of all, the most appropriate land-use/land-cover classes selected as greenspace are analyzed for each open dataset; then, different open datasets are evaluated and compared in terms of five measures (accuracy, precision, recall, F1-score and green coverage rate). Five urban areas in UK are chosen as study areas. Two categories of reference datasets are used for evaluation, including an Ordnance Survey (OS) greenspace dataset in UK and a number of sampling points classified by referring to Google Earth. Results show that: the OSM dataset performs the best, while comparing with the OS dataset (characterized by a narrowly interpreted greenspace); and the FROM-GLC10 dataset performs the best, while comparing with the sampling points (characterized by a broadly interpreted greenspace). Moreover, by using these two open datasets, most quantitative results are close to or higher than 80 %, in terms of the accuracy, precision, recall and F1-score; in most cases there also is the smallest difference between using these two open datasets and corresponding reference datasets, in terms of the green coverage rate. These findings have benefits for researchers and planners to choose an appropriate open dataset for greenspace mapping.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xymy发布了新的文献求助10
刚刚
小胡同学完成签到,获得积分10
刚刚
xiaofan发布了新的文献求助10
刚刚
含蓄的赛君完成签到,获得积分10
刚刚
论英雄发布了新的文献求助30
1秒前
1秒前
小二郎应助囚徒采纳,获得10
2秒前
2秒前
2秒前
巴卡发布了新的文献求助10
3秒前
CAOHOU应助含蓄的赛君采纳,获得10
4秒前
4秒前
4秒前
Singularity应助风中的一德采纳,获得10
5秒前
思源应助xymy采纳,获得10
6秒前
bkagyin应助灯灯采纳,获得10
6秒前
qiang完成签到,获得积分10
6秒前
在水一方应助包容的瑾瑜采纳,获得10
6秒前
7秒前
此晴可待完成签到,获得积分10
7秒前
7秒前
ajun发布了新的文献求助30
8秒前
juphen2发布了新的文献求助10
8秒前
CAOHOU应助清雨潇璇采纳,获得10
8秒前
8秒前
顾矜应助xiaofan采纳,获得10
9秒前
所所应助黎明采纳,获得10
9秒前
缓慢的香芦完成签到,获得积分10
10秒前
www完成签到 ,获得积分10
11秒前
boshi发布了新的文献求助10
11秒前
11秒前
ZYao65发布了新的文献求助10
11秒前
YHJX完成签到,获得积分10
12秒前
博修发布了新的文献求助10
12秒前
彪壮的火车完成签到,获得积分10
12秒前
坦率的匪应助七月流火采纳,获得10
13秒前
siqi发布了新的文献求助10
13秒前
13秒前
量子星尘发布了新的文献求助10
13秒前
13秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Handbook of Marine Craft Hydrodynamics and Motion Control, 2nd Edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3987223
求助须知:如何正确求助?哪些是违规求助? 3529513
关于积分的说明 11245651
捐赠科研通 3268108
什么是DOI,文献DOI怎么找? 1804027
邀请新用户注册赠送积分活动 881303
科研通“疑难数据库(出版商)”最低求助积分说明 808650