材料科学
传质
水分
多孔性
微波食品加热
复合材料
含水量
微观结构
化学工程
纳米技术
化学
色谱法
量子力学
物理
工程类
岩土工程
作者
Junhong Yang,Qianqian Di,Jun Zhao,Liqiu Wang
出处
期刊:Volume 3: Combustion, Fire and Reacting Flow; Heat Transfer in Multiphase Systems; Heat Transfer in Transport Phenomena in Manufacturing and Materials Processing; Heat and Mass Transfer in Biotechnology; Low Temperature Heat Transfer; Environmental Heat Transfer; Heat Transfer Education; Visualization of Heat Transfer
日期:2009-01-01
被引量:2
摘要
Astragalus slice is one species of stem and root medicinal herb with the widely curative effects, also a special and typical plant porous material, and the drying operation is one of important processing technologies in its storage and further practical application. This paper characterizes the microstructure of Astragalus slices dried by microwave technique at 200 W by using scanning electronic microscope (SEM). The study also compares Astragalus slices dried by microwave with those untreated and discusses the drying mechanism. Result shows that as compared to the untreated sample, the microwave dried sample behaves much shorter drying time with more and larger pore and open structure on the surface layer of matrix, but without significant change about the distribution status of cytoplasm inside parenchyma cells. Further analysis suggests that the vapor diffusion is the dominant mode of moisture transfer inside matrix during the microwave drying process of sample, resulting in the well-preserved structures of sample, including parenchyma cell and trachea. This is also helpful for maintaining the distribution status of cytoplasm, particularly avoiding the agglomeration of biological macro-molecular, which is benefit to improving the permeability of moisture transfer path, leading to the rapidly dehydration of moisture. This work seems to be helpful for developing the optimized drying technology of plant porous material focused on micro-mechanism and the quality of dried products.
科研通智能强力驱动
Strongly Powered by AbleSci AI