化学
聚合物
聚合
丙烯酸酯
高分子化学
DNA
琼脂糖
琼脂糖凝胶电泳
动态光散射
凝胶电泳
单体
乙二醇
有机化学
生物化学
化学工程
色谱法
纳米颗粒
工程类
作者
David M. Lynn,Róbert Langer
摘要
Poly(β-aminoesters) 1−3 were synthesized via the addition of N,N'-dimethylethylenediamine, piperazine, and 4,4'-trimethylenedipiperidine to 1,4-butanediol diacrylate. Polymerization proceeded exclusively via the conjugate addition of the secondary amines to the bis(acrylate ester). Polymers were isolated in up to 86% yields with molecular weights ranging up to 31 200 relative to polystyrene standards. The polymers degraded hydrolytically in acidic and alkaline media to yield 1,4-butanediol and β-amino acids 4a−6a and the degradation kinetics were investigated at pH 5.1 and 7.4. In general, the polymers degraded more rapidly at pH 7.4 than at pH 5.1. In initial screening assays, both the polymers and their degradation products were determined to be noncytotoxic relative to poly(ethylene imine), a polymer conventionally employed as a synthetic transfection vector. Polymers 1−3 interacted electrostatically with polyanionic plasmid DNA in water and buffer at physiological pH, as determined by agarose gel electrophoresis, quasi-elastic dynamic light scattering (QELS), and ζ-potential measurements. All three polymers condensed DNA into soluble DNA/polymer particles on the order of 50−200 nm. Particles formed from polymers 1 and 2 aggregated extensively, while particles formed from polymer 3 exhibited positive ζ-potentials (e.g., +10 to +15 mV) and did not aggregate for up to 18 h. The nanometer-sized dimensions and reduced cytotoxicities of these DNA/polymer complexes suggest that these types of polymers may be useful as degradable polymeric gene transfer vectors.
科研通智能强力驱动
Strongly Powered by AbleSci AI