DNA折纸
纳米技术
纳米结构
化学
DNA纳米技术
分子机器
DNA
辣根过氧化物酶
纳米尺度
自组装
纳米生物技术
纳米颗粒
材料科学
酶
生物化学
作者
Yanming Fu,Dongdong Zeng,Jie Chao,Yanqiu Jin,Zhao Zhang,Huajie Liu,Di Li,Hongwei Ma,Qing Huang,Kurt V. Gothelf,Chunhai Fan
摘要
Self-assembled DNA origami nanostructures have shown great promise for bottom-up construction of complex objects with nanoscale addressability. Here we show that DNA origami-based 1D nanoribbons and nanotubes are one-pot assembled with controllable sizes and nanoscale addressability with high speed (within only 10–20 min), exhibiting extraordinarily high cooperativity that is often observed in assembly of natural molecular machines in cells (e.g. ribosome). By exploiting the high specificity of DNA-based self-assembly, we can precisely anchor proteins on these DNA origami nanostructures with sub-10 nm resolution and at the single-molecule level. We attach a pair of enzymes (horseradish peroxidase and glucose oxidase) at the inner side of DNA nanotubes and observe high coupling efficiency of enzyme cascade within this confined nanospace. Hence, DNA nanostructures with such unprecedented properties shed new light on the design of nanoscale bioreactors and nanomedicine and provide an artificial system for studying enzyme activities and cascade in highly organized and crowded cell-mimicking environments.
科研通智能强力驱动
Strongly Powered by AbleSci AI