Automatic blemish detection in liquid crystal flat panel displays

计算机科学 液晶 液晶显示器 计算机图形学(图像) 光学 平板 计算机视觉 物理 操作系统
作者
William B. Pratt,Sunil S. Sawkar,Kevin O'Reilly
出处
期刊:Proceedings of SPIE 被引量:34
标识
DOI:10.1117/12.301232
摘要

Visual defects sometimes occur during the manufacturing of flat panel liquid crystal displays (LCDs). One class of defects includes a variety of blemishes variously called stain (English), mura (Japanese) or alluk (Korean). These blemishes appear as low contrast, non-uniform brightness regions, typically larger than single pixels. They are caused by a variety of factors such as non-uniformity distributed liquid crystal material and foreign particles within the panel. Such blemishes cannot be repaired. Automatic inspection systems, designed for pixel and line defect detection, have had difficulty accurately detecting and quantifying LCD blemishes. At present, most blemish detection is performed by human inspectors. This paper describes a recently developed automatic inspection system, which reliably detects, quantifies and classifies LCD blemishes in the presence of single pixel and line pixel defects that tend to obscure the subtle blemishes. The algorithm underlying this system, called MuraLookTM, uses conventional image processing operators such as convolutional filtering, morphological filtering and blob shape analysis under region-of-interest control in a novel combination to systematically separate each of over twenty different blemish patterns. Strength measures for each class of blemish are used under human operator control to grade each blemish as pass or fail. The paper discusses various types of defects in LCD panels and relates them to the MuraLook system defect class patterns. The architecture of the MuraLook defect detection system is described.© (1998) COPYRIGHT SPIE--The International Society for Optical Engineering. Downloading of the abstract is permitted for personal use only.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
1秒前
1秒前
1秒前
1秒前
ding应助aaa采纳,获得10
1秒前
千寻发布了新的文献求助10
1秒前
bbbbuuuoo完成签到,获得积分20
2秒前
脑洞疼应助朝槿采纳,获得10
2秒前
2秒前
2秒前
顺利毕业完成签到,获得积分10
2秒前
111发布了新的文献求助10
3秒前
勤恳碧蓉发布了新的文献求助10
4秒前
李健的粉丝团团长应助yao采纳,获得30
4秒前
4秒前
HCXsir完成签到,获得积分10
4秒前
4秒前
5秒前
Owen应助看起来不太强采纳,获得10
5秒前
星星发布了新的文献求助10
5秒前
5秒前
小不遛w完成签到,获得积分10
5秒前
5秒前
Owen应助机智初夏采纳,获得10
5秒前
泡芙完成签到 ,获得积分10
5秒前
6秒前
吞了大象的蛇完成签到,获得积分20
6秒前
喜多米430发布了新的文献求助10
7秒前
橘里完成签到,获得积分10
7秒前
李闻闻发布了新的文献求助10
7秒前
领导范儿应助高大的千秋采纳,获得30
7秒前
WEIMING发布了新的文献求助20
8秒前
luming完成签到,获得积分10
9秒前
火星上初曼完成签到,获得积分10
9秒前
yoruyik完成签到 ,获得积分10
9秒前
星星完成签到,获得积分10
10秒前
超级如风完成签到,获得积分10
10秒前
orixero应助江十三采纳,获得10
10秒前
高分求助中
合成生物食品制造技术导则,团体标准,编号:T/CITS 396-2025 1000
The Leucovorin Guide for Parents: Understanding Autism’s Folate 1000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Fermented Coffee Market 500
Comparing natural with chemical additive production 500
Atlas of Liver Pathology: A Pattern-Based Approach 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5238122
求助须知:如何正确求助?哪些是违规求助? 4405802
关于积分的说明 13711768
捐赠科研通 4274090
什么是DOI,文献DOI怎么找? 2345419
邀请新用户注册赠送积分活动 1342496
关于科研通互助平台的介绍 1300416