化学工程
核化学
自愈水凝胶
材料科学
肿胀 的
生物材料
作者
Shengqi Zang,Guangying Dong,Bo Peng,Jie Xu,Zhi-wei Ma,Xinwen Wang,Ling-xia Liu,Qintao Wang
标识
DOI:10.1016/j.carbpol.2014.07.018
摘要
Chitosan has previously been exploited as a scaffold in tissue engineering processes. To avoid infection, chitosan must be sterilized prior to contact with bodily fluids or blood. Previous research has shown that autoclaved chitosan solution lead to decreased molecular weight, dynamic viscosity, and rate of gelling. We prepared a thermosensitive chitosan hydrogel using autoclaved chitosan powder (121 °C, 10 min) and β-glycerophosphate (chitosan-PA/GP) and compared the physicochemical properties and biocompatibility in vitro with autoclaved chitosan solution/GP hydrogel. The chitosan-PA/GP hydrogel had a shortened gelation time, higher viscosity, increased water absorption, appropriate degradation time, porous structure, and no obvious cytotoxicity on human periodontal ligament cells. Scanning electron microscopy demonstrated that the cells exhibited a normal morphology. The chitosan-PA/GP hydrogel promoted periodontal tissue regeneration in dog class III furcation defects. The chitosan-PA/GP thermosensitive hydrogel displayed suitable physicochemical properties and biocompatibilities and represents a promising candidate as an injectable tissue engineering scaffold.
科研通智能强力驱动
Strongly Powered by AbleSci AI