多铁性
材料科学
铁电性
凝聚态物理
电导率
纳米尺度
透射电子显微镜
磁畴壁(磁性)
导电体
热传导
氧化物
领域(数学分析)
纳米技术
电子结构
化学物理
光电子学
物理
复合材料
磁场
电介质
数学分析
量子力学
冶金
数学
磁化
作者
Jan Seidel,Lane W. Martin,Qing He,Qingfeng Zhan,Ying‐Hao Chu,A. Rother,M. Hawkridge,Petro Maksymovych,Pu Yu,M. Gajek,Nina Balke,Sergei V. Kalinin,Sibylle Gemming,Feng Wang,Gustau Catalán,J. F. Scott,Nicola A. Spaldin,J. Orenstein,R. Ramesh
出处
期刊:Nature Materials
[Springer Nature]
日期:2009-01-25
卷期号:8 (3): 229-234
被引量:1295
摘要
Domain walls may play an important role in future electronic devices, given their small size as well as the fact that their location can be controlled. Here, we report the observation of room-temperature electronic conductivity at ferroelectric domain walls in the insulating multiferroic BiFeO(3). The origin and nature of the observed conductivity are probed using a combination of conductive atomic force microscopy, high-resolution transmission electron microscopy and first-principles density functional computations. Our analyses indicate that the conductivity correlates with structurally driven changes in both the electrostatic potential and the local electronic structure, which shows a decrease in the bandgap at the domain wall. Additionally, we demonstrate the potential for device applications of such conducting nanoscale features.
科研通智能强力驱动
Strongly Powered by AbleSci AI