Driving Speed of Young Novice and Experienced Drivers in Simulated Hazard Anticipation Scenes

预测(人工智能) 危害 心理学 计算机科学 认知心理学 人工智能 有机化学 化学
作者
Yisrael Parmet,Avinoam Borowsky,Omri Yona,Tal Oron-Gilad
出处
期刊:Human Factors [SAGE Publishing]
卷期号:57 (2): 311-328 被引量:26
标识
DOI:10.1177/0018720814548220
摘要

In this study, we aimed to demonstrate analysis methods that are sensitive to speed-related differences between experienced and young novice drivers. These differences may be linked to determining which group is better at anticipating hazards.Awareness of hazardous situations, especially potential ones, is a major discriminator between experienced and young novice drivers who tend to misidentify potential hazards in the traffic environment.Experienced and young novice drivers were asked to drive a sequence of 14 scenarios in a driving simulator. Scenarios were created in two city areas, residential and business district, and included various types of hazards. Group homogeneity of speed for each group of drivers was computed for each scenario, and two business district scenarios were subjected to piecewise linear regression analysis.Group homogeneity analysis showed consistent and significant experience-based differences across all scenarios, revealing that the experienced drivers as a group were more homogenous in choosing their driving speed. Differences between groups were larger in the business district where speed was less restricted. Piecewise linear regression analysis revealed that experienced drivers approached uncontrolled intersections by slowing down and responded earlier to materialized events.Young novice drivers were more likely than experienced drivers to choose diverse values of speed at any given road section, presumably due to their poor awareness of potential and hidden hazards. Unlike other analysis methods, it is argued that group homogeneity of speed is a more sensitive measurement to reveal these gaps.Speed management could be the basis of future hazard anticipation simulator assessments.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
vivien发布了新的文献求助10
刚刚
英俊的铭应助小章鱼采纳,获得30
1秒前
1秒前
江峰发布了新的文献求助10
1秒前
桐桐应助华子的五A替身采纳,获得10
1秒前
wen发布了新的文献求助40
1秒前
是龙龙呀发布了新的文献求助10
2秒前
慕青应助聪慧芷巧采纳,获得10
2秒前
uqfan发布了新的文献求助10
2秒前
czh完成签到,获得积分10
2秒前
zz完成签到,获得积分10
3秒前
3秒前
3秒前
4秒前
4秒前
gcc发布了新的文献求助10
5秒前
火锅完成签到,获得积分10
6秒前
6秒前
7秒前
烂漫绮波发布了新的文献求助30
8秒前
桐桐应助霍霍采纳,获得10
8秒前
9秒前
9秒前
垃圾的摆设完成签到,获得积分10
9秒前
Hxw完成签到,获得积分10
9秒前
vivien完成签到,获得积分10
9秒前
轻松元柏完成签到,获得积分10
9秒前
9秒前
酷波er应助zhang采纳,获得10
10秒前
CipherSage应助东北一枝花采纳,获得10
10秒前
10秒前
背后海亦应助宋宋采纳,获得20
11秒前
11秒前
星河zp发布了新的文献求助10
11秒前
杳鸢应助小章鱼采纳,获得30
11秒前
芒果完成签到,获得积分10
13秒前
李芳发布了新的文献求助10
13秒前
13秒前
诚心断天完成签到,获得积分10
14秒前
李健的小迷弟应助噪先森采纳,获得10
14秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3950900
求助须知:如何正确求助?哪些是违规求助? 3496263
关于积分的说明 11081235
捐赠科研通 3226738
什么是DOI,文献DOI怎么找? 1783955
邀请新用户注册赠送积分活动 867992
科研通“疑难数据库(出版商)”最低求助积分说明 800993