Driving Speed of Young Novice and Experienced Drivers in Simulated Hazard Anticipation Scenes

预测(人工智能) 危害 心理学 计算机科学 认知心理学 人工智能 有机化学 化学
作者
Yisrael Parmet,Avinoam Borowsky,Omri Yona,Tal Oron-Gilad
出处
期刊:Human Factors [SAGE]
卷期号:57 (2): 311-328 被引量:26
标识
DOI:10.1177/0018720814548220
摘要

In this study, we aimed to demonstrate analysis methods that are sensitive to speed-related differences between experienced and young novice drivers. These differences may be linked to determining which group is better at anticipating hazards.Awareness of hazardous situations, especially potential ones, is a major discriminator between experienced and young novice drivers who tend to misidentify potential hazards in the traffic environment.Experienced and young novice drivers were asked to drive a sequence of 14 scenarios in a driving simulator. Scenarios were created in two city areas, residential and business district, and included various types of hazards. Group homogeneity of speed for each group of drivers was computed for each scenario, and two business district scenarios were subjected to piecewise linear regression analysis.Group homogeneity analysis showed consistent and significant experience-based differences across all scenarios, revealing that the experienced drivers as a group were more homogenous in choosing their driving speed. Differences between groups were larger in the business district where speed was less restricted. Piecewise linear regression analysis revealed that experienced drivers approached uncontrolled intersections by slowing down and responded earlier to materialized events.Young novice drivers were more likely than experienced drivers to choose diverse values of speed at any given road section, presumably due to their poor awareness of potential and hidden hazards. Unlike other analysis methods, it is argued that group homogeneity of speed is a more sensitive measurement to reveal these gaps.Speed management could be the basis of future hazard anticipation simulator assessments.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
dadazhou完成签到,获得积分10
1秒前
2秒前
Agnesma完成签到,获得积分10
2秒前
科研通AI2S应助魔幻的访天采纳,获得10
2秒前
科研通AI2S应助mbf采纳,获得10
2秒前
ranj发布了新的文献求助10
3秒前
MNL给MNL的求助进行了留言
3秒前
年年年年完成签到,获得积分10
4秒前
4秒前
7秒前
9秒前
平常的苡完成签到,获得积分10
11秒前
墨之未发布了新的文献求助10
11秒前
朴素的海莲完成签到,获得积分20
11秒前
雪白映天完成签到,获得积分10
12秒前
nini发布了新的文献求助30
12秒前
乐乐应助开朗含海采纳,获得10
13秒前
汉堡包应助周末不上发条采纳,获得10
14秒前
gincv发布了新的文献求助10
14秒前
17秒前
十一发布了新的文献求助10
20秒前
xx完成签到 ,获得积分20
21秒前
22秒前
仚屳完成签到,获得积分10
24秒前
mmmio应助科研通管家采纳,获得10
24秒前
mmmio应助科研通管家采纳,获得10
24秒前
yin应助科研通管家采纳,获得10
24秒前
mmmio应助科研通管家采纳,获得10
24秒前
mmmio应助科研通管家采纳,获得10
24秒前
慕青应助科研通管家采纳,获得10
25秒前
共享精神应助科研通管家采纳,获得10
25秒前
mmmio应助科研通管家采纳,获得10
25秒前
顾矜应助科研通管家采纳,获得10
25秒前
隐形曼青应助科研通管家采纳,获得10
25秒前
李爱国应助科研通管家采纳,获得10
25秒前
bkagyin应助科研通管家采纳,获得10
25秒前
丘比特应助科研通管家采纳,获得10
25秒前
充电宝应助科研通管家采纳,获得10
25秒前
25秒前
丘比特应助科研通管家采纳,获得10
25秒前
高分求助中
Solution Manual for Strategic Compensation A Human Resource Management Approach 1200
Natural History of Mantodea 螳螂的自然史 1000
Glucuronolactone Market Outlook Report: Industry Size, Competition, Trends and Growth Opportunities by Region, YoY Forecasts from 2024 to 2031 800
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
Zeitschrift für Orient-Archäologie 500
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 500
Synchrotron X-Ray Methods in Clay Science 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3340351
求助须知:如何正确求助?哪些是违规求助? 2968384
关于积分的说明 8633457
捐赠科研通 2647933
什么是DOI,文献DOI怎么找? 1449886
科研通“疑难数据库(出版商)”最低求助积分说明 671575
邀请新用户注册赠送积分活动 660594