人工智能
支持向量机
分级(工程)
模式识别(心理学)
决策树
数学
计算机科学
特征(语言学)
计算机视觉
工程类
土木工程
哲学
语言学
作者
Xiaobo Zhang,Jiewen Zhao,Yanxiao Li
标识
DOI:10.1016/j.patrec.2007.06.001
摘要
This paper presents a system for apple color grading into four classes according to standards stipulated in China. To automatically grade apple fruit color, a laboratory machine vision system was developed, which consisted of a color CCD camera equipped with an image grab device, a bi-cone roller device controlled by a stepping motor, and a lighting source. Four images, one for every rotation of 90°, were taken from each apple. Seventeen color feature parameters (FP) were extracted from each apple in the image processing. Three hundred and eighteen “Fuji” apples were examined by the system, and were divided into two sets, with 200 in “Training set” and 118 in “Test set”. A method called organization feature parameter (OFP), based on formulae expression trees by using genetic algorithms (GA), was used in this paper. When the initial FP could not sensitively distinguish among different classes of apples, the FP were organized into one new OFP by using genetic algorithm. By applying the step decision tree algorithm in combination with the OFP method, high grade judgment ratios were achieved in the classification of two of four apple color grades, i.e., ‘Extra’, and ‘Reject’. However, the grade judgment ratio for ‘class I’ and ‘class II’ was relatively low. Compared with BP-ANN and SVM, the OFPs method was more accurate than BP-ANN, but a little lower than SVM for identification results.
科研通智能强力驱动
Strongly Powered by AbleSci AI