Association of a Reproducible Epigenetic Risk Profile for Schizophrenia With Brain Methylation and Function

表观遗传学 精神分裂症(面向对象编程) DNA甲基化 背外侧前额叶皮质 神经影像学 双相情感障碍 前额叶皮质 医学 心理学 肿瘤科 临床心理学 精神科 生物信息学 内科学 遗传学 认知 生物 基因 基因表达
作者
Junfang Chen,Zhenxiang Zang,Urs Braun,Kristina Schwarz,Anais Harneit,Thomas Kremer,Ren Ma,Janina I. Schweiger,Carolin Moessnang,Lena S. Geiger,Han Cao,Franziska Degenhardt,Markus M. Nöthen,Heike Tost,Andreas Meyer‐Lindenberg,Emanuel Schwarz
出处
期刊:JAMA Psychiatry [American Medical Association]
卷期号:77 (6): 628-628 被引量:53
标识
DOI:10.1001/jamapsychiatry.2019.4792
摘要

Importance

Schizophrenia is a severe mental disorder in which epigenetic mechanisms may contribute to illness risk. Epigenetic profiles can be derived from blood cells, but to our knowledge, it is unknown whether these predict established brain alterations associated with schizophrenia.

Objective

To identify an epigenetic signature (quantified as polymethylation score [PMS]) of schizophrenia using machine learning applied to genome-wide blood DNA-methylation data; evaluate whether differences in blood-derived PMS are mirrored in data from postmortem brain samples; test whether the PMS is associated with alterations of dorsolateral prefrontal cortex hippocampal (DLPFC-HC) connectivity during working memory in healthy controls (HC); explore the association between interactions between polygenic and epigenetic risk with DLPFC-HC connectivity; and test the specificity of the signature compared with other serious psychiatric disorders.

Design, Setting, and Participants

In this case-control study conducted from 2008 to 2018 in sites in Germany, the United Kingdom, the United States, and Australia, blood DNA-methylation data from 2230 whole-blood samples from 6 independent cohorts comprising HC (1238 [55.5%]) and participants with schizophrenia (803 [36.0%]), bipolar disorder (39 [1.7%]), major depressive disorder 35 [1.6%]), and autism (27 [1.2%]), and first-degree relatives of all patient groups (88 [3.9%]) were analyzed. DNA-methylation data were further explored from 244 postmortem DLPFC samples from 136 HC and 108 patients with schizophrenia. Neuroimaging and genome-wide association data were available for 393 HC. The latter data was used to calculate a polygenic risk score (PRS) for schizophrenia. The data were analyzed in 2019.

Main Outcomes and Measures

The accuracy of schizophrenia control classification based on machine learning using epigenetic data; association of schizophrenia PMS scores with DLPFC-HC connectivity; and association of the interaction between PRS and PMS with DLPFC-HC connectivity.

Results

This study included 7488 participants (4395 men [58.7%]), of whom 3158 (2230 men [70.6%]) received a diagnosis of schizophrenia. The PMS signature was associated with schizophrenia across 3 independent data sets (area under the curve [AUC] from 0.69 to 0.78;Pvalue from 0.049 to 1.24 × 10−7) and data from postmortem DLPFC samples (AUC = 0.63;P = 1.42 × 10−4), but not with major depressive disorder (AUC = 0.51;P = .16), autism (AUC = 0.53;P = .66), or bipolar disorder (AUC = 0.58;P = .21). Pathways contributing most to the classification included synaptic processes. Healthy controls with schizophrenia-like PMS showed significantly altered DLPFC-HC connectivity (validation methylation/magnetic resonance imaging,t < −3.81;P for familywise error, <.04; validation magnetic resonance imaging,t < −3.54;P for familywise error, <.02), mirroring the lack of functional decoupling in schizophrenia. There was no significant association of the interaction between PMS and PRS with DLPFC-HC connectivity (P > .19).

Conclusions and Relevance

We identified a reproducible blood DNA-methylation signature specific for schizophrenia that was correlated with altered functional DLPFC-HC coupling during working memory and mapped to methylation differences found in DLPFC postmortem samples. This indicates a possible epigenetic contribution to a schizophrenia intermediate phenotype and suggests that PMS could be of interest to be studied in the context of multimodal biomarkers for disease stratification and treatment personalization.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
hebhm完成签到,获得积分10
1秒前
吴雪完成签到 ,获得积分10
13秒前
张豪杰完成签到 ,获得积分10
14秒前
加贝完成签到 ,获得积分10
15秒前
可靠的书桃完成签到 ,获得积分10
26秒前
Aurora完成签到 ,获得积分10
26秒前
菠萝包完成签到 ,获得积分10
28秒前
xiang完成签到 ,获得积分10
29秒前
美好灵寒完成签到 ,获得积分10
29秒前
37秒前
搜集达人应助科研通管家采纳,获得10
37秒前
今后应助科研通管家采纳,获得10
37秒前
39秒前
fann完成签到 ,获得积分10
41秒前
風在燃烧发布了新的文献求助10
46秒前
Adel完成签到 ,获得积分10
49秒前
迅速的宛海完成签到 ,获得积分10
58秒前
MLJ完成签到 ,获得积分10
1分钟前
ewmmel完成签到 ,获得积分10
1分钟前
土拨鼠完成签到 ,获得积分10
1分钟前
Sofia完成签到 ,获得积分10
1分钟前
执意完成签到 ,获得积分10
1分钟前
微生完成签到 ,获得积分10
1分钟前
勤劳的颤完成签到 ,获得积分10
1分钟前
研友_ZA2B68完成签到,获得积分10
1分钟前
冲刺的仙人掌完成签到 ,获得积分10
1分钟前
Regulusyang完成签到,获得积分10
1分钟前
1分钟前
猪猪hero发布了新的文献求助10
2分钟前
猪仔5号完成签到 ,获得积分10
2分钟前
zx完成签到 ,获得积分10
2分钟前
Yang22完成签到,获得积分10
2分钟前
海猫食堂完成签到,获得积分10
2分钟前
xx完成签到 ,获得积分10
2分钟前
2分钟前
wangruize发布了新的文献求助10
2分钟前
蔡勇强完成签到 ,获得积分10
2分钟前
小亮哈哈完成签到,获得积分0
2分钟前
高山流水完成签到,获得积分10
2分钟前
xiaxiao应助科研通管家采纳,获得100
2分钟前
高分求助中
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
지식생태학: 생태학, 죽은 지식을 깨우다 600
Mantodea of the World: Species Catalog Andrew M 500
海南省蛇咬伤流行病学特征与预后影响因素分析 500
Neuromuscular and Electrodiagnostic Medicine Board Review 500
ランス多機能化技術による溶鋼脱ガス処理の高効率化の研究 500
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3463646
求助须知:如何正确求助?哪些是违规求助? 3057044
关于积分的说明 9055263
捐赠科研通 2746966
什么是DOI,文献DOI怎么找? 1507198
科研通“疑难数据库(出版商)”最低求助积分说明 696451
邀请新用户注册赠送积分活动 695956