生物
WRKY蛋白质结构域
尖孢镰刀菌
转录因子
植物对草食的防御
水杨酸
系统获得性抵抗
信号转导
基因
防御机制
转基因
细胞生物学
植物抗病性
基因表达
植物
遗传学
拟南芥
转录组
突变体
作者
Joydeep Chakraborty,Senjuti Sen,Prithwi Ghosh,Akansha Jain,Sampa Das
标识
DOI:10.1186/s12870-020-02527-9
摘要
Abstract Background Suppression and activation of plant defense genes is comprehensively regulated by WRKY family transcription factors. Chickpea, the non-model crop legume suffers from wilt caused by Fusarium oxysporum f. sp. ciceri Race1 (Foc1), defense response mechanisms of which are poorly understood. Here, we attempted to show interaction between WRKY70 and several downstream signaling components involved in susceptibility/resistance response in chickpea upon challenge with Foc1. Results In the present study, we found Cicer arietinum L. WRKY70 (CaWRKY70) negatively governs multiple defense responsive pathways, including Systemic Acquired Resistance (SAR) activation in chickpea upon Foc1 infection. CaWRKY70 is found to be significantly accumulated at shoot tissues of susceptible (JG62) chickpea under Foc1 stress and salicylic acid (SA) application. CaWRKY70 overexpression promotes susceptibility in resistant chickpea (WR315) plants to Foc1 infection. Transgenic plants upon Foc1 inoculation demonstrated suppression of not only endogenous SA concentrations but expression of genes involved in SA signaling. CaWRKY70 overexpressing chickpea roots exhibited higher ion-leakage and Foc1 biomass accumulation compared to control transgenic (VC) plants. CaWRKY70 overexpression suppresses H 2 O 2 production and resultant reactive oxygen species (ROS) induced cell death in Foc1 infected chickpea roots, stem and leaves. Being the nuclear targeted protein, CaWRKY70 suppresses CaMPK9-CaWRKY40 signaling in chickpea through its direct and indirect negative regulatory activities. Protein-protein interaction study revealed CaWRKY70 and CaRPP2-like CC-NB-ARC-LRR protein suppresses hyper-immune signaling in chickpea. Together, our study provides novel insights into mechanisms of suppression of the multiple defense signaling components in chickpea by CaWRKY70 under Foc1 stress. Conclusion CaWRKY70 mediated defense suppression unveils networking between several immune signaling events negatively affecting downstream resistance mechanisms in chickpea under Foc1 stress.
科研通智能强力驱动
Strongly Powered by AbleSci AI