Ultrasonic Diagnosis of Breast Nodules Using Modified Faster R-CNN

卷积神经网络 计算机科学 人工智能 恶性肿瘤 模式识别(心理学) 特征提取 乳腺癌 特征(语言学) 超声波传感器 深度学习 放射科 医学 癌症 病理 语言学 哲学 内科学
作者
Zihao Zhang,Xuesheng Zhang,X.J. Lin,Licong Dong,Sure Zhang,Xueling Zhang,Desheng Sun,Kehong Yuan
出处
期刊:Ultrasonic Imaging [SAGE Publishing]
卷期号:41 (6): 353-367 被引量:26
标识
DOI:10.1177/0161734619882683
摘要

Breast cancer has become the biggest threat to female health. Ultrasonic diagnosis of breast cancer based on artificial intelligence is basically a classification of benign and malignant tumors, which does not meet clinical demand. Besides, the current target detection method performs poorly in detecting small lesions, while it is clinically required to detect nodules below 2 mm. The objective of this study is to (a) propose a diagnostic method based on Breast Imaging Reporting and Data System (BI-RADS) and (b) increase its detectability of small lesions. We modified the framework of Faster R-CNN (Faster Region-based Convolutional Neural Network) by introducing multi-scale feature extraction and multi-resolution candidate bound extraction into the network. Then, it was trained using 852 images of BI-RADS C2, 739 images of C3, and 1662 images of malignancy (BI-RADS 4a/4b/4c/5/6). We compared our model with unmodified Faster R-CNN and YOLO v3 (You Only Look Once v3). The mean average precision (mAP) is significantly increased to 0.913, while its average detection speed is slightly declined to 4.11 FPS (frames per second). Meanwhile, its detectivity of small lesions is effectively improved. Moreover, we also tentatively applied our model on video sequences and got satisfactory results. We modified Faster R-CNN and trained it partly based on BI-RADS. Its detectability of lesions, as well as small nodules, was significantly improved. In view of wide coverage of dataset and satisfactory test results, our method can basically meet clinical needs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
乐观健柏完成签到,获得积分10
刚刚
江澄发布了新的文献求助10
刚刚
jackie完成签到,获得积分10
刚刚
淡淡的寻梅完成签到,获得积分20
1秒前
1秒前
ZX612完成签到,获得积分10
1秒前
Doctor_Mill完成签到,获得积分10
2秒前
咳炎泥马完成签到,获得积分10
2秒前
精明芷巧完成签到 ,获得积分10
3秒前
咕咕咕发布了新的文献求助10
4秒前
chenxi完成签到 ,获得积分10
4秒前
最棒哒完成签到 ,获得积分10
5秒前
modesty发布了新的文献求助10
5秒前
木木完成签到 ,获得积分10
6秒前
7秒前
不想太多发布了新的文献求助20
7秒前
研友_ZGD9o8完成签到,获得积分10
8秒前
项听蓉完成签到,获得积分10
8秒前
ayayaya完成签到,获得积分10
9秒前
Eton完成签到,获得积分10
9秒前
华仔应助科研通管家采纳,获得10
10秒前
Oo。完成签到,获得积分10
10秒前
情怀应助科研通管家采纳,获得10
10秒前
英姑应助科研通管家采纳,获得10
10秒前
江澄完成签到,获得积分10
10秒前
xzy998应助科研通管家采纳,获得10
10秒前
烟花应助科研通管家采纳,获得10
10秒前
Lucas应助科研通管家采纳,获得10
10秒前
10秒前
12秒前
12秒前
喜悦寒凝完成签到,获得积分10
12秒前
科研通AI2S应助modesty采纳,获得10
12秒前
QP完成签到,获得积分10
12秒前
鹏N完成签到,获得积分10
12秒前
qing完成签到,获得积分10
13秒前
知否完成签到 ,获得积分0
13秒前
小透明发布了新的文献求助10
13秒前
13秒前
发酒疯很方便吃完成签到,获得积分10
13秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
A new approach to the extrapolation of accelerated life test data 1000
Coking simulation aids on-stream time 450
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4015806
求助须知:如何正确求助?哪些是违规求助? 3555777
关于积分的说明 11318714
捐赠科研通 3288911
什么是DOI,文献DOI怎么找? 1812318
邀请新用户注册赠送积分活动 887882
科研通“疑难数据库(出版商)”最低求助积分说明 812027