Ultrasonic Diagnosis of Breast Nodules Using Modified Faster R-CNN

卷积神经网络 计算机科学 人工智能 恶性肿瘤 模式识别(心理学) 特征提取 乳腺癌 特征(语言学) 超声波传感器 深度学习 放射科 医学 癌症 病理 语言学 哲学 内科学
作者
Zihao Zhang,Xuesheng Zhang,X.J. Lin,Licong Dong,Sure Zhang,Xueling Zhang,Desheng Sun,Kehong Yuan
出处
期刊:Ultrasonic Imaging [SAGE]
卷期号:41 (6): 353-367 被引量:26
标识
DOI:10.1177/0161734619882683
摘要

Breast cancer has become the biggest threat to female health. Ultrasonic diagnosis of breast cancer based on artificial intelligence is basically a classification of benign and malignant tumors, which does not meet clinical demand. Besides, the current target detection method performs poorly in detecting small lesions, while it is clinically required to detect nodules below 2 mm. The objective of this study is to (a) propose a diagnostic method based on Breast Imaging Reporting and Data System (BI-RADS) and (b) increase its detectability of small lesions. We modified the framework of Faster R-CNN (Faster Region-based Convolutional Neural Network) by introducing multi-scale feature extraction and multi-resolution candidate bound extraction into the network. Then, it was trained using 852 images of BI-RADS C2, 739 images of C3, and 1662 images of malignancy (BI-RADS 4a/4b/4c/5/6). We compared our model with unmodified Faster R-CNN and YOLO v3 (You Only Look Once v3). The mean average precision (mAP) is significantly increased to 0.913, while its average detection speed is slightly declined to 4.11 FPS (frames per second). Meanwhile, its detectivity of small lesions is effectively improved. Moreover, we also tentatively applied our model on video sequences and got satisfactory results. We modified Faster R-CNN and trained it partly based on BI-RADS. Its detectability of lesions, as well as small nodules, was significantly improved. In view of wide coverage of dataset and satisfactory test results, our method can basically meet clinical needs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小蘑菇应助Raclen111采纳,获得10
1秒前
1秒前
小马甲应助听雨采纳,获得10
1秒前
yjf发布了新的文献求助10
4秒前
852应助shizi采纳,获得10
5秒前
5秒前
6秒前
希望天下0贩的0应助Z.zz采纳,获得10
6秒前
7秒前
热情的板栗完成签到,获得积分10
8秒前
8秒前
9秒前
科研通AI2S应助完美的海秋采纳,获得10
10秒前
领导范儿应助WZJ采纳,获得10
10秒前
yjf完成签到,获得积分10
10秒前
10秒前
可爱的函函应助耶耶采纳,获得10
10秒前
小鱼发布了新的文献求助10
11秒前
天天快乐应助虎虎虎采纳,获得10
11秒前
12秒前
桐桐应助崔崔采纳,获得10
12秒前
瓜尔佳发布了新的文献求助10
13秒前
14秒前
听雨发布了新的文献求助10
14秒前
15秒前
15秒前
风趣访卉发布了新的文献求助10
15秒前
善学以致用应助精明凌旋采纳,获得10
16秒前
huy完成签到,获得积分10
16秒前
ding应助碧蓝的曼岚采纳,获得10
16秒前
叮咚雨发布了新的文献求助10
18秒前
一一应助wwww111采纳,获得50
19秒前
cctv18应助南初采纳,获得30
19秒前
Eden发布了新的文献求助10
20秒前
FF关闭了FF文献求助
22秒前
小新完成签到,获得积分10
22秒前
脑洞疼应助小刘采纳,获得10
23秒前
24秒前
24秒前
25秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Semiconductor Process Reliability in Practice 1500
Handbook of Prejudice, Stereotyping, and Discrimination (3rd Ed. 2024) 1200
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3244153
求助须知:如何正确求助?哪些是违规求助? 2887922
关于积分的说明 8250452
捐赠科研通 2556491
什么是DOI,文献DOI怎么找? 1384663
科研通“疑难数据库(出版商)”最低求助积分说明 649901
邀请新用户注册赠送积分活动 625984