Multivehicle Flocking With Collision Avoidance via Distributed Model Predictive Control

植绒(纹理) 控制理论(社会学) 避碰 碰撞 模型预测控制 计算机科学 弹道 数学优化 控制(管理) 数学 人工智能 材料科学 物理 计算机安全 天文 复合材料
作者
Yang Lyu,Jinwen Hu,Ben M. Chen,Chunhui Zhao,Quan Pan
出处
期刊:IEEE transactions on cybernetics [Institute of Electrical and Electronics Engineers]
卷期号:51 (5): 2651-2662 被引量:46
标识
DOI:10.1109/tcyb.2019.2944892
摘要

Flocking control has been studied extensively along with the wide applications of multivehicle systems. In this article, the distributed flocking control strategy is studied for a network of autonomous vehicles with limited communication range. The main difference from the existing methods lies in that collision avoidance is considered a necessary condition while the vehicles are driven to follow a common desired trajectory under the proximity network. The sufficient conditions for system feasibility and stability are given by the proposed strategy. First, a centralized standard model predictive control (MPC) scheme is adopted to formulate the multivehicle flocking control problem by setting collision avoidance as an optimization constraint under the proximity network. Further, an equivalent distributed MPC (DMPC) is developed based on the consensus of local controllers under the existing framework of the alternating direction method of multiplier (ADMM). However, it may require infinite time to achieve consensus for all vehicles and, thus, the local controllers resulting in a limited number of ADMM iterations may not satisfy the given constraints. The constraints for each local controller are then modified so that the collision between vehicles is avoided all of the time. The feasibility and stability of the proposed method are analyzed under practical conditions. Simulation and experimental results show that the flocking of vehicles can track the common desired trajectory stably with no collisions by the proposed method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
桐桐应助大苗采纳,获得10
2秒前
neao完成签到 ,获得积分10
2秒前
俭朴的身影完成签到,获得积分10
3秒前
独特元蝶发布了新的文献求助10
3秒前
4秒前
4秒前
坐亭下发布了新的文献求助10
5秒前
6秒前
6秒前
7秒前
wanglong0118发布了新的文献求助10
8秒前
bkagyin应助无情向薇采纳,获得10
8秒前
李健的小迷弟应助Stroeve采纳,获得10
8秒前
9秒前
10秒前
科研小白完成签到,获得积分10
10秒前
11秒前
落寞百合完成签到,获得积分10
11秒前
kingwill应助谦让含玉采纳,获得20
11秒前
Kang发布了新的文献求助10
11秒前
12秒前
12秒前
14秒前
凯呀月啊应助feiying88采纳,获得10
14秒前
三岁半发布了新的文献求助10
14秒前
14秒前
14秒前
14秒前
Ashe发布了新的文献求助10
14秒前
SciGPT应助尊敬寒松采纳,获得10
15秒前
An.完成签到,获得积分10
15秒前
wyp发布了新的文献求助10
17秒前
17秒前
Akim应助影子采纳,获得10
17秒前
19秒前
王王牛奶发布了新的文献求助10
19秒前
doby发布了新的文献求助10
20秒前
烟花应助1461644768采纳,获得10
21秒前
21秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Aktuelle Entwicklungen in der linguistischen Forschung 300
Current Perspectives on Generative SLA - Processing, Influence, and Interfaces 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3992711
求助须知:如何正确求助?哪些是违规求助? 3533584
关于积分的说明 11263072
捐赠科研通 3273260
什么是DOI,文献DOI怎么找? 1806018
邀请新用户注册赠送积分活动 882889
科研通“疑难数据库(出版商)”最低求助积分说明 809545