亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Prediction and interpretation of cancer survival using graph convolution neural networks

比例危险模型 计算机科学 癌症 图形 相关性 人工智能 肿瘤科 内科学 医学 数学 几何学 理论计算机科学
作者
Ricardo J. Ramirez,Yu‐Chiao Chiu,Songyao Zhang,Joshua Ramirez,Yidong Chen,Yufei Huang,Yufang Jin
出处
期刊:Methods [Elsevier]
卷期号:192: 120-130 被引量:43
标识
DOI:10.1016/j.ymeth.2021.01.004
摘要

The survival rate of cancer has increased significantly during the past two decades for breast, prostate, testicular, and colon cancer, while the brain and pancreatic cancers have a much lower median survival rate that has not improved much over the last forty years. This has imposed the challenge of finding gene markers for early cancer detection and treatment strategies. Different methods including regression-based Cox-PH, artificial neural networks, and recently deep learning algorithms have been proposed to predict the survival rate for cancers. We established in this work a novel graph convolution neural network (GCNN) approach called Surv_GCNN to predict the survival rate for 13 different cancer types using the TCGA dataset. For each cancer type, 6 Surv_GCNN models with graphs generated by correlation analysis, GeneMania database, and correlation + GeneMania were trained with and without clinical data to predict the risk score (RS). The performance of the 6 Surv_GCNN models was compared with two other existing models, Cox-PH and Cox-nnet. The results showed that Cox-PH has the worst performance among 8 tested models across the 13 cancer types while Surv_GCNN models with clinical data reported the best overall performance, outperforming other competing models in 7 out of 13 cancer types including BLCA, BRCA, COAD, LUSC, SARC, STAD, and UCEC. A novel network-based interpretation of Surv_GCNN was also proposed to identify potential gene markers for breast cancer. The signatures learned by the nodes in the hidden layer of Surv_GCNN were identified and were linked to potential gene markers by network modularization. The identified gene markers for breast cancer have been compared to a total of 213 gene markers from three widely cited lists for breast cancer survival analysis. About 57% of gene markers obtained by Surv_GCNN with correlation + GeneMania graph either overlap or directly interact with the 213 genes, confirming the effectiveness of the identified markers by Surv_GCNN.

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
4秒前
8秒前
hongping发布了新的文献求助20
12秒前
面包战士发布了新的文献求助10
13秒前
酷酷海豚完成签到,获得积分10
28秒前
深情安青应助面包战士采纳,获得10
30秒前
深情安青应助科研通管家采纳,获得10
36秒前
搜集达人应助105400155采纳,获得10
39秒前
辛苦打工人完成签到,获得积分10
40秒前
mirrovo完成签到 ,获得积分10
41秒前
grosfgcrd发布了新的文献求助10
47秒前
48秒前
49秒前
chen完成签到 ,获得积分10
52秒前
闻塔发布了新的文献求助10
52秒前
105400155发布了新的文献求助10
53秒前
Linden_bd完成签到 ,获得积分10
55秒前
阁主完成签到,获得积分10
58秒前
1分钟前
1900完成签到,获得积分10
1分钟前
EASA发布了新的文献求助10
1分钟前
往事随风完成签到,获得积分10
1分钟前
科研通AI6.1应助简单捕手采纳,获得10
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
PPD发布了新的文献求助30
1分钟前
1分钟前
闻塔完成签到,获得积分10
1分钟前
1分钟前
1分钟前
PPD发布了新的文献求助10
1分钟前
PPD发布了新的文献求助30
1分钟前
PPD发布了新的文献求助20
1分钟前
PPD发布了新的文献求助10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Les Mantodea de guyane 2500
Signals, Systems, and Signal Processing 510
Discrete-Time Signals and Systems 510
The Dance of Butch/Femme: The Complementarity and Autonomy of Lesbian Gender Identity 500
Driving under the influence: Epidemiology, etiology, prevention, policy, and treatment 500
Differentiation Between Social Groups: Studies in the Social Psychology of Intergroup Relations 350
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5875612
求助须知:如何正确求助?哪些是违规求助? 6519070
关于积分的说明 15677388
捐赠科研通 4993580
什么是DOI,文献DOI怎么找? 2691573
邀请新用户注册赠送积分活动 1633815
关于科研通互助平台的介绍 1591471