清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Prediction and interpretation of cancer survival using graph convolution neural networks

比例危险模型 计算机科学 癌症 图形 相关性 人工智能 肿瘤科 内科学 医学 数学 几何学 理论计算机科学
作者
Ricardo J. Ramirez,Yu‐Chiao Chiu,Songyao Zhang,Joshua Ramirez,Yidong Chen,Yufei Huang,Yufang Jin
出处
期刊:Methods [Elsevier BV]
卷期号:192: 120-130 被引量:43
标识
DOI:10.1016/j.ymeth.2021.01.004
摘要

The survival rate of cancer has increased significantly during the past two decades for breast, prostate, testicular, and colon cancer, while the brain and pancreatic cancers have a much lower median survival rate that has not improved much over the last forty years. This has imposed the challenge of finding gene markers for early cancer detection and treatment strategies. Different methods including regression-based Cox-PH, artificial neural networks, and recently deep learning algorithms have been proposed to predict the survival rate for cancers. We established in this work a novel graph convolution neural network (GCNN) approach called Surv_GCNN to predict the survival rate for 13 different cancer types using the TCGA dataset. For each cancer type, 6 Surv_GCNN models with graphs generated by correlation analysis, GeneMania database, and correlation + GeneMania were trained with and without clinical data to predict the risk score (RS). The performance of the 6 Surv_GCNN models was compared with two other existing models, Cox-PH and Cox-nnet. The results showed that Cox-PH has the worst performance among 8 tested models across the 13 cancer types while Surv_GCNN models with clinical data reported the best overall performance, outperforming other competing models in 7 out of 13 cancer types including BLCA, BRCA, COAD, LUSC, SARC, STAD, and UCEC. A novel network-based interpretation of Surv_GCNN was also proposed to identify potential gene markers for breast cancer. The signatures learned by the nodes in the hidden layer of Surv_GCNN were identified and were linked to potential gene markers by network modularization. The identified gene markers for breast cancer have been compared to a total of 213 gene markers from three widely cited lists for breast cancer survival analysis. About 57% of gene markers obtained by Surv_GCNN with correlation + GeneMania graph either overlap or directly interact with the 213 genes, confirming the effectiveness of the identified markers by Surv_GCNN.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yeurekar发布了新的文献求助10
1秒前
Ava应助小王采纳,获得10
4秒前
谭玲慧完成签到 ,获得积分10
6秒前
KINGAZX完成签到 ,获得积分10
9秒前
无花果应助科研通管家采纳,获得10
14秒前
何pulapula完成签到 ,获得积分10
17秒前
yeurekar完成签到,获得积分10
20秒前
济民财完成签到,获得积分10
23秒前
乐观的星月完成签到 ,获得积分10
29秒前
迈克老狼完成签到 ,获得积分10
32秒前
xiaoyi完成签到 ,获得积分10
37秒前
辣小扬完成签到 ,获得积分10
41秒前
星辰大海应助扭捏的扭捏采纳,获得10
43秒前
单耳兔完成签到 ,获得积分10
48秒前
starwan完成签到 ,获得积分10
48秒前
rodrisk完成签到 ,获得积分10
49秒前
幽默飞雪完成签到 ,获得积分10
52秒前
量子星尘发布了新的文献求助10
55秒前
wbh发布了新的文献求助10
58秒前
1分钟前
温柔乐蕊发布了新的文献求助10
1分钟前
包容的剑完成签到 ,获得积分10
1分钟前
希望天下0贩的0应助wbh采纳,获得10
1分钟前
Yolo完成签到 ,获得积分10
1分钟前
澍澍完成签到,获得积分10
1分钟前
开心完成签到 ,获得积分10
1分钟前
lida完成签到,获得积分10
1分钟前
1分钟前
1分钟前
mrwang完成签到 ,获得积分10
1分钟前
月儿完成签到 ,获得积分10
1分钟前
无情的水香完成签到 ,获得积分10
1分钟前
tmobiusx完成签到,获得积分10
1分钟前
温柔乐蕊完成签到,获得积分10
1分钟前
科研的豪哥完成签到 ,获得积分10
1分钟前
陈豆豆完成签到 ,获得积分10
1分钟前
SCI完成签到 ,获得积分10
1分钟前
迅速的幻雪完成签到 ,获得积分10
2分钟前
量子星尘发布了新的文献求助10
2分钟前
lql完成签到 ,获得积分10
2分钟前
高分求助中
【提示信息,请勿应助】关于scihub 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 2390
A new approach to the extrapolation of accelerated life test data 1000
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4008593
求助须知:如何正确求助?哪些是违规求助? 3548274
关于积分的说明 11298724
捐赠科研通 3282975
什么是DOI,文献DOI怎么找? 1810274
邀请新用户注册赠送积分活动 885976
科研通“疑难数据库(出版商)”最低求助积分说明 811218