Prediction and interpretation of cancer survival using graph convolution neural networks

比例危险模型 计算机科学 癌症 图形 相关性 人工智能 肿瘤科 内科学 医学 数学 几何学 理论计算机科学
作者
Ricardo J. Ramirez,Yu‐Chiao Chiu,Songyao Zhang,Joshua Ramirez,Yidong Chen,Yufei Huang,Yufang Jin
出处
期刊:Methods [Elsevier]
卷期号:192: 120-130 被引量:43
标识
DOI:10.1016/j.ymeth.2021.01.004
摘要

The survival rate of cancer has increased significantly during the past two decades for breast, prostate, testicular, and colon cancer, while the brain and pancreatic cancers have a much lower median survival rate that has not improved much over the last forty years. This has imposed the challenge of finding gene markers for early cancer detection and treatment strategies. Different methods including regression-based Cox-PH, artificial neural networks, and recently deep learning algorithms have been proposed to predict the survival rate for cancers. We established in this work a novel graph convolution neural network (GCNN) approach called Surv_GCNN to predict the survival rate for 13 different cancer types using the TCGA dataset. For each cancer type, 6 Surv_GCNN models with graphs generated by correlation analysis, GeneMania database, and correlation + GeneMania were trained with and without clinical data to predict the risk score (RS). The performance of the 6 Surv_GCNN models was compared with two other existing models, Cox-PH and Cox-nnet. The results showed that Cox-PH has the worst performance among 8 tested models across the 13 cancer types while Surv_GCNN models with clinical data reported the best overall performance, outperforming other competing models in 7 out of 13 cancer types including BLCA, BRCA, COAD, LUSC, SARC, STAD, and UCEC. A novel network-based interpretation of Surv_GCNN was also proposed to identify potential gene markers for breast cancer. The signatures learned by the nodes in the hidden layer of Surv_GCNN were identified and were linked to potential gene markers by network modularization. The identified gene markers for breast cancer have been compared to a total of 213 gene markers from three widely cited lists for breast cancer survival analysis. About 57% of gene markers obtained by Surv_GCNN with correlation + GeneMania graph either overlap or directly interact with the 213 genes, confirming the effectiveness of the identified markers by Surv_GCNN.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
Owen应助科研通管家采纳,获得10
1秒前
科研通AI2S应助科研通管家采纳,获得10
1秒前
共享精神应助科研通管家采纳,获得10
1秒前
ding应助科研通管家采纳,获得10
1秒前
华仔应助科研通管家采纳,获得10
1秒前
2秒前
2秒前
2秒前
2秒前
2秒前
ygr应助南衣采纳,获得20
3秒前
小松松完成签到,获得积分10
3秒前
烟花应助ww采纳,获得10
3秒前
天天快乐应助雷九万班采纳,获得10
3秒前
4秒前
科目三应助邵某采纳,获得10
4秒前
4秒前
cc完成签到,获得积分10
4秒前
风车完成签到,获得积分10
4秒前
LSY应助庾储采纳,获得10
6秒前
gugudong发布了新的文献求助10
7秒前
斯文败类应助一一采纳,获得10
7秒前
8秒前
8秒前
威武青亦应助小聖采纳,获得10
9秒前
mikasa发布了新的文献求助10
9秒前
10秒前
Hyde发布了新的文献求助200
10秒前
10秒前
忧郁向雪发布了新的文献求助10
12秒前
老jia发布了新的文献求助10
12秒前
chongya发布了新的文献求助30
12秒前
13秒前
在水一方应助liz采纳,获得10
14秒前
彭小璐完成签到,获得积分10
14秒前
123完成签到,获得积分10
14秒前
103x发布了新的文献求助10
14秒前
茂如花发布了新的文献求助10
15秒前
77发布了新的文献求助10
15秒前
高分求助中
The ACS Guide to Scholarly Communication 1000
Handbook of the Mammals of the World – Volume 3: Primates 805
Ethnicities: Media, Health, and Coping 800
Gerard de Lairesse : an artist between stage and studio 500
Digging and Dealing in Eighteenth-Century Rome 500
Queer Politics in Times of New Authoritarianisms: Popular Culture in South Asia 500
Manual of Sewer Condition Classification 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3069389
求助须知:如何正确求助?哪些是违规求助? 2723274
关于积分的说明 7481149
捐赠科研通 2370322
什么是DOI,文献DOI怎么找? 1256943
科研通“疑难数据库(出版商)”最低求助积分说明 609763
版权声明 596852