Plastic pollution is one of the most serious environmental issues worldwide. The negative influence of plastics on aquatic organisms has increasingly concerned, especially the influence of microplastic (MPs). In the present study, the toxicology of nano-sized MPs (nMPs) and micron-sized MPs (mMPs) were comparatively studied. Goldfish larvae were exposed to 10, 100 and 1000 μg/L nMPs and mMPs for 1, 3 and 7 days. The enrichment of MPs, body length, heart rate, motor ability, microscopic and ultrastructure of intestine, liver, gill and muscle tissue, as well as the oxidative stress were analyzed. Results showed that both 70 nm and 50 μm MPs were accumulated in the digestive tract of larvae. MPs at high concentrations could induce oxidative stress, destroy intestine, liver and gill tissues, increase heart rate, and inhibit growth and swimming speed of the larvae. The most important finding was that nMPs could enter into the muscle tissue through the epidermis of the larvae. It could cause damage to muscle tissue, destroy nerve fibers, inhibit acetylcholinase (AchE) activity, and show great adverse effects on larval movement than mMPs. In conclusion, both nMPs and mMPs at higher concentrations can cause damage to fish larvae and nMPs are potentially more hazardous.