亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Amide Bond Activation: The Power of Resonance

酰胺 化学 肽键 反应性(心理学) 组合化学 立体化学 有机化学 医学 病理 替代医学
作者
Guangchen Li,Siyue Ma,Michal Szostak
出处
期刊:Trends in chemistry [Elsevier]
卷期号:2 (10): 914-928 被引量:217
标识
DOI:10.1016/j.trechm.2020.08.001
摘要

Amide bond twisting is a modern tool to modulate amidic resonance and achieve an array of previously elusive transformations of amides. The importance of amides in various areas of chemistry has stimulated the rapid development of new generic strategies for amide bond activation. A wide range of new twisted and ground-state-destabilized amides have been prepared, in some cases achieving a full twist of the amide bond in practical acyclic templates. The activation of traditionally inert amide bonds can be achieved by acyl, decarbonylative, radical, and acyl addition pathways, providing enticing opportunities for reaction discovery. Mechanistic studies have provided evidence for the role of twist and ground-state-destabilization as the driving force in amide bond activation. The amide bond represents the most fundamental functional group in numerous areas of chemistry, such as organic synthesis, drug discovery, polymers, and biochemistry. Although typical amides are planar and the amide N–C(O) bond is notoriously difficult to break due to nN→π⁎C=O resonance, over the past 5 years remarkable breakthroughs have been achieved in the activation of amides by complementary mechanisms that ultimately hinge on ground-state destabilization of the amide linkage. In this review, we present an overview of the main reactivity manifolds employed in the activation of amides by selective N–C(O) cleavage pathways along with their main applications in catalytic as well as stoichiometric synthesis. This cutting-edge platform clearly demonstrates how to harness the power of amidic resonance to achieve a host of previously elusive transformations of amides and holds the promise to change the landscape of how chemists perceive the traditionally unreactive amide bonds into readily modifiable linchpin functional groups that can be readily triggered for the desired reactivity. The amide bond represents the most fundamental functional group in numerous areas of chemistry, such as organic synthesis, drug discovery, polymers, and biochemistry. Although typical amides are planar and the amide N–C(O) bond is notoriously difficult to break due to nN→π⁎C=O resonance, over the past 5 years remarkable breakthroughs have been achieved in the activation of amides by complementary mechanisms that ultimately hinge on ground-state destabilization of the amide linkage. In this review, we present an overview of the main reactivity manifolds employed in the activation of amides by selective N–C(O) cleavage pathways along with their main applications in catalytic as well as stoichiometric synthesis. This cutting-edge platform clearly demonstrates how to harness the power of amidic resonance to achieve a host of previously elusive transformations of amides and holds the promise to change the landscape of how chemists perceive the traditionally unreactive amide bonds into readily modifiable linchpin functional groups that can be readily triggered for the desired reactivity. carboxylic acid derivatives in which a nitrogen atom is attached to a carbonyl group. a process describing heterolytic bond cleavage. a process that creates bonds between two different fragments using a metal catalyst. a process in which bonds are broken homolytically. a process in which one amide bond is converted to another amide bond. an amide in which the geometry of the six atoms comprising the amide bond is not planar. a set of parameters used to describe the geometric distortion of amide bonds.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
安青兰完成签到 ,获得积分10
6秒前
11秒前
12秒前
17秒前
Criminology34举报Raymond求助涉嫌违规
18秒前
空溟fever发布了新的文献求助10
18秒前
hx发布了新的文献求助10
19秒前
大气亦巧完成签到,获得积分10
19秒前
25秒前
33秒前
领导范儿应助谛因采纳,获得50
33秒前
35秒前
李健应助赵振辉采纳,获得10
37秒前
romance发布了新的文献求助10
39秒前
斯文败类应助hx采纳,获得10
42秒前
1分钟前
level完成签到 ,获得积分10
1分钟前
1分钟前
空溟fever完成签到,获得积分10
1分钟前
1分钟前
caca完成签到,获得积分0
1分钟前
matrixu完成签到,获得积分10
1分钟前
李爱国应助南威采纳,获得10
1分钟前
2分钟前
赵振辉发布了新的文献求助10
2分钟前
2分钟前
Nightfall完成签到,获得积分10
2分钟前
赵振辉完成签到,获得积分10
2分钟前
2分钟前
花花公子完成签到,获得积分10
2分钟前
Nightfall发布了新的文献求助10
2分钟前
无极微光应助xiaodengdream采纳,获得20
2分钟前
旺旺大礼包完成签到,获得积分10
2分钟前
KSung完成签到,获得积分10
2分钟前
2分钟前
说好不吃肥肉的完成签到,获得积分10
2分钟前
2分钟前
花海完成签到 ,获得积分10
2分钟前
南威发布了新的文献求助10
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
Psychology of Self-Regulation 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5639594
求助须知:如何正确求助?哪些是违规求助? 4749168
关于积分的说明 15006790
捐赠科研通 4797774
什么是DOI,文献DOI怎么找? 2563840
邀请新用户注册赠送积分活动 1522769
关于科研通互助平台的介绍 1482471